0 like 1 dislike
13.1k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 13.1k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
** * *** ** * **
* * **** * ***

int main() {
* ** * ****** * **** ** * ** ******
*** ***** * * ** ** ** ** *** %f * ** ** &a, &b, * *** **
** ** **** * * **** * * * ** *
** * ***** * * ***** * ** *** {
* ******** ** * * *** ** ** *** *** *** * ***** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = *** * ** = * ** * * *** a, b, c, (-b)/(2*a), * ** * * * (-b)/(2*a), * ******
*** ** * * * * ****
** **** **** * *** * **** * * if(d==0) {
** * ** * **** **** * ****** ** ** * * * ** * **** * ** ***
* ******* ** *** ** * * * ** * * *** **** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** a, b, c, x1);
* **** ** * ** * *
** * * ****** ** * * * ** ** ** *** * * {
*** ** **** * * *** ** ** * ** * ** * ** * *
** *** * *** **** ********* * * * * **** * * * * *** ** **** *
* **** * **** *** ** * * ** ** * * * * ******* * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** ** = %.2f\nx2 = ** ** *** * a, b, c, x1, x2);
*** * * ** ** **** ** **
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * ** *
* ** * ** * ****
#include *** * ** * ***

int main()
{
* ** * * * * ****** ** * * * *
* * * * *** *** ** ** ** * %f *** * * **** * ** ** ** *
*** * * * ** *** * ** ** * * * **
*** **** ** * * ** * **** **
* ** * ** * **** ** ** ** * * *
* * * * * * ** * ** * *
* ** * * * ** * ** * **** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * **** = %.2f\nx2 = ** * * * ** *
*** *** ***** * * * *** if(D==0)
**** **** *** * ** * * ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** *** ** *
** *** * *** *** **
*** ********** * ************ * *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * ** = * * ** = * ** ** * ***** * * *** * ** ** ** **
* ***** **** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * ** ** *
* ** * *** ***
* * ** *** * ** *

int main()
{
*** ****** ** * ** * * * ***** *
** ** **** ** * * ** * * ** * * ** %f * * * *** ** ** ** * ***
*** * ** *** * * ** *** **
* * * * * * * * * * * * **
** *** ****** * * ** *** ** * **
* * *** * ** ** **
* ** * ** ** ** ** **** ** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and ***** = %.2f\nx2 = * * ** ** *
** * * * *** * *** **
* * ** ** ** *** * ** ** *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * *
**** * * * *****
* ** * * * * ****** * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ****** = %.2f + ** ** = %.2f - * * * *** ** ** * ****** *** * ***
* ******* ** * ** *** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** * ** *** ** * * * * a,b,c,x1,x2,D;
** ** * * * * * *** %f * * *** * ** ****** ** *
* ** ** * * ** ***** * * ******
* *** ** ***** * * * = (-b + sqrt(D))/(2*a);
*** * *** * * * = (-b - sqrt(D))/(2*a);
*** ** * * * * ** *** ****
**** *** ** * *** * * * ** ****
* ** ** * * * * ** * * ** * ** **** ** **** ** * * *** *** * ** * *** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
** **** * * ** ** * *** * **** * ** * * *** ****** * ** ******* ** ***** ** = %.2f\n",x1);
*** ** ** * * * * * ** **** * ** * * * *** * *** **** ** * * * * * *** ** = %.2f",x2);
** * * *** *** * *** * **** * * *** ***
** * ** ** * * * ** * if(D==0)
** ** * ****** ****** * ********* * ** ** **
* ** * * * * * * ** * * * ** * ***** ** * *** * * * * *** * ** * ***** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
**** * ** ****** * ***** * ** * * **** ***** * ** * ** * *** *** * ** * = x2 = %.2f",x1);
* * * *** ***** *** * *** *** * **** **** *
* * * ** * ** *** * *****
* * * * * *** * * * * ** ** ** * *
** ** ** * **** * *** * * * ** * * ** *** ** *** * * ** ** * *** ** * * *** ***** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * ** * ***** * * *** ** ** * ** * * ****** ** * ** * * ** ** *** * *** *** * * = * * * * * ** ** * ***
* * * ** * ***** * ** * * **** * ******* **** * * * * * ** * * * ** = ** ** ****** *
** * * * *** * ** ** *** * ** * *** ** *
** * *** ** ** * * ** * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * ** ***** ** ** ** * a,b,c,x1,x2,D;
* * * *** ** ******* * * ** ***** %f *** *** * ** * ** ** * ***** *
** ** *** * * **** ******* **
*** ***** * ** **** * ** = (-b + sqrt(D))/(2*a);
* ***** ****** ** * = (-b - sqrt(D))/(2*a);
* * ** * * ******* *
* * * * *** ** ** ** * * * * * * * *** *
* * ********* ** ** **** * * * ******* ******* ** *** * * * * *** ** *** * ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
** * * ** ** ** * ** * ******** ***** *** * ** ** ** * ***** ****** ****** *** ** * = %.2f\n",x1);
* ****** ** *** **** ** * * ** * **** *** **** **** ** ** *** ** = %.2f",x2);
* ** *** ** *** * * *** * ** ** *** * * * ***
**** **** * *** * if(D==0)
* *** * * * * * * ******** * * * ****
*** ** * * * * * ** ** ***** * **** *** ** ****** * * * *** *** ** ***** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
*** ** ** * * ** * * ** * *** * ** * * * * * * * * ** * ** ** = x2 = %.2f",x1);
******* * ** ****** *** *** ** ** * *
** * *** * ** **
* ** ** *** * * *** *** * * * * ** *
* **** *** * * ******* * * * * ** * **** *** ** * * ** * ** * * ** * * * ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** * * **** ** * * * **** ** ** * * ** ** ** ***** ** *** * * * * ** * *** * = * * * ** * ** * * * *
*** ** ** * * ****** * **** ** *** * * ** ***** * ** * * * ***** * * ** = * ** * ***** *** * **
* * **** * * * ** * ** **** *** *** ***
* * ** * *** *** * ** * ** *** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* * ** * *** *
* ** * *** ** **
int main()
{
*** ******* ** ** **** * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * **** *** **** * ** *** * * * *** *** * *** ** * * * * *

** * ** * ** ** **** ** ** * of %.2fx^2 + %.2fx +%.2f = 0 * ****** **
** ** * *** ** * = (b*b-4*a*c);
***** * ***** ** * * * * (D < 0)
* *** * ****** * * *
** * * * ** * *** *** complex and ***** **
* *** * * * * * * * * ** * * = ** **** * * ** **** ** *
** **** ** *** *** * * ** = * ** * * * ** * ** ****
* *** * *** *** *** *
*** * ** *** * ***** **** * (D > 0)
* ** *** **** *
**** * ** * * * ***** *** ****** * * real and **** *** ***
* *** ** * **** * * ** ***** ** ***** = ** * ***** + sqrt(D))/(2*a));
* *** * * * *** ** * = %.2f",(-b - sqrt(D))/(2*a));
* * * ****** * * * *
**** * * * ** * (D == 0)
**** * * *** * * **
********* ** *** *** * *** * ** * real and same\n");
* *** * ** * ** *** ** ** * * * ***** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * ****** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * **** *
****** ** * ** **
int main()
{
* * * *** ** * * ** * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * * * ** * * * * ** ** * * * * *** * * * ******* *

** * **** **** * * * ** ****** ***** of %.2fx^2 + %.2fx +%.2f = 0 **** ** **
** ***** ** ****** **** * = (b*b-4*a*c);
**** * **** **** * * * (D < 0)
** ***** ** ** * * * *
*** ** *** * *** * *** * ** complex and * ** * * ***** *
* ** *** * ** * * *** * ** ** = ** *** ** * * * * *
******** *** * * ** *** * ** * * = * *** * * * **** ** *
* * * *****
** ** ***** ** ******* (D > 0)
* * * **** * * * * *
*** *** **** * ** *** * * ** ** real and ** *** **** *
** *** * * * **** **** * ** = * * * ** + sqrt(D))/(2*a));
* ** * ****** * ** ** * * * = %.2f",(-b - sqrt(D))/(2*a));
** **** ** * *** ** ***
****** ** ***** *** *** ** * (D == 0)
** **** ** * * * * ***** *** *
***** *** * ***** ** ** * ** *** * real and same\n");
* ** * *** **** * * * ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* *** * * * *** ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * *** * * *** *
* * * *
int main()
{
* ** *** ******* * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
*** **** * * * * ** *** * ****** * ******* ** **

* * *** *** * **** * ** ***** of %.2fx^2 + %.2fx +%.2f = 0 * ** * *
*** ** * ***** *** = (b*b-4*a*c);
*** * ***** *** ****** **** (D < 0)
** * * * * * * *** * *
*** *** **** *** ** * * * complex and *** * **
** * * ** * * * * * **** * * = * * ** * *** * * * *** *
* * ** ***** *** ** * * **** * * ** = *** **** * ** * **** * * *
* ******* * *** * * *** *
* * * *** *** ** * * * (D > 0)
* * ** **** * ***** *** * *
* ** ** ** * *** *** **** * * real and * * *
* ** ** * ** * *** ********** = * * ** + sqrt(D))/(2*a));
**** * * ** **** * * * * * = %.2f",(-b - sqrt(D))/(2*a));
** ****** * * * * *
* * * ***** *** ** (D == 0)
* *** * * * **** ****
* * * ** ** * *** **** * ** real and same\r\n");
* * ** ** ** *** * * *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ********** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * * ** *
* * ** * ******
int main()
{
* * ** * *** *** * * *** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** ** ** * * ** * * *** * * * *** ** **** ***

* * *** ** * ** ****** * **** * of %.2fx^2 + %.2fx +%.2f = 0 *** ** ** * **
* *** ** * ** * * ** = (b*b-4*a*c);
**** **** * * * ** (D < 0)
* * ** * * * *
* * * * * * *** ********* complex and ******* **
* **** * ** ** * * * *** * ** = * **** ** *** * ** ** *** ** *
* ********* * *** * *** * * = * ** ** * * * * *
* *** ***** * *** *
******* ** * * * ** (D > 0)
** * * ** * *** * * ** *
***** ** *** *** ** **** * * * * real and *** *** ***** ***
* * * *** ** ** ** ** *** * *** * = ** * * + sqrt(D))/(2*a));
* * * * * * * * ** * * * * = %.2f",(-b - sqrt(D))/(2*a));
** ***** * ** * **
* ** * *** * *** * * ** * (D == 0)
** ** ** *** * * ** *
** * **** ** *** *** * * real and same\r\n");
* * * ** *** * ** * ***** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * ***** * * * *** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
**** **** * * **** **
* * * * * * ***
int main()
{
* * * * *** *** * **** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
*** ** * ** * ** **** * **** ** *** * ** ** *** * ***

** ** *** *** * ** * ** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
**** * * * * = (b*b-4*a*c);
*** * * ** * ** * = (-b + sqrt(D))/(2*a);
*** * * ** * *** * ** * = (-b - sqrt(D))/(2*a);
**** ***** * * * **** (D < 0)
** *** * * *** * *** *
* * ** * **** * *** * * * * * complex and * ** ** *
** * *** * *** *** * ** *** * * ** ** = **** ** * * *** * * ** ***
*** * *** ** ** * *** * * ** = * ** * ** *******
** * * *** ** ** *** *
* * *** ** * ** ** ** (D > 0)
* ** * * ** * *
** ** **** * * * ** * *** * real and ** * ****
* * * * * ** **** *** ** * * * = ** *** *****
******* * ****** * * ***** * = %.2f",x2);
** ** *** * ***
** * ** * ** ** *** ** ** (D == 0)
* * * * **** ** *
***** *** **** *** ***** *** real and same\r\n");
* * *** * * * ** ***** = x2 = %.2f",x1);
* * ** * * **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.127.115
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users