0 like 1 dislike
7.9k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 7.9k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
** * *** *
** *** **** * * *

int main() {
*** * ** * *** *** *** * *** *
*** ** ******* * * * * * * %f * *** &a, &b, ** * * **
* * *** * ****** *** * * **
** * * * ** ** *** *** * ** {
* * * ** ** * * * * * ** ** * * ** * * ** ****** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** ** ** = * ** = ** ** ** a, b, c, (-b)/(2*a), * * * **** (-b)/(2*a), * * * * *
** * ** * * * ** ** *
* ** ** *** * * *** *** if(d==0) {
*** *** **** * *** * * ** ** *** *** * **
* * *** ** ** ** * * ** ** * *** * * ** * ** ***** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * ** * a, b, c, x1);
*** ** *** ****** ** ** *
**** * * ** * **** ** * * {
** *** ** * **** ***** * ** ** ** ** * * *** * *** * ***
* *** ** * **** ********* * ***** ** ****** * * * * **
* ** ** ***** *** **** *** *** *** *** ** ** * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * = %.2f\nx2 = ** * a, b, c, x1, x2);
* * *** ** * *********
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** ** *** ****
** ** * *** * ***
#include **** ** * *

int main()
{
* * * ******** ** * * ** * *
***** * ** ** * * ** ** *** * * ** %f * ** ** ** * *** *** ** *
* ***** **** ***** *
***** ** **** * **** * **
* * ** ** ** * * * * *
* ** * ** * * * * * * ********
* * * *** ** **** *** ** * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** * * = %.2f\nx2 = * * * * * ****
** *** * ** * * * * * * if(D==0)
* ** ** *** * * ** **** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** ***
** ** ** ** * ****
* **** * * * * * *** ** * **** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** = ** * * = **** ** ** ** * ** * ** ** ***
* * * * * * ** ** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * ** *
***** * *** * * *
** * ** ** * * *

int main()
{
* * * **** *** ** * * ** * ** **
* **** ** * ** * * **** * ** %f ** * * ******* * **** ****
***** * **** * ** ** **
** **** *** * ** * * ** *
* * * * ** * ** * ****** * *
* **** **** * * * ** ****
** ** * ** ** ** *** ** * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ***** = %.2f\nx2 = ** * * * ****
* * * * *** * * ** ** * * *
* ** **** **** ** ** ** ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** ** ** ** * *
**** * ***** *** *******
*** * **** *** * ******* ** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** **** = %.2f + * = %.2f - ** ** *** *** ** ** *** * * * ** * * * ** ** *
**** * ***** ** *** ** * *** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
**** * * *** * * * * * a,b,c,x1,x2,D;
** * * ** ** * * ** ** * ** %f ** ** * *** ** * *
** * ** * ** * ****** * ****
** * * ***** ** * ** * * = (-b + sqrt(D))/(2*a);
** * * ** * * = (-b - sqrt(D))/(2*a);
**** ** * * * ** ** ** *
* * * *** * * ******** * ** **** * **** * *** *
** * * **** * **** *** * **** * ** * ****** * * *** ** **** **** ** ** *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
********* *** **** * * ***** *** **** ** * * * ** *** ** * **** * ** ** ** = %.2f\n",x1);
** * * *** * ** **** *** ***** **** ** ***** **** *** ****** * ** * * ** = %.2f",x2);
** * * * ** *** * * *** ** ** * ** **** ** * *
** *** **** * * ** if(D==0)
** * * * ******** * ** **** ** ** * * ***
* **** ******* * ** ** * * ** * *** ** * ******** * * * * * *** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
***** ** ** * ****** * ** * **** * ** *** ** *** * *** * ** * ** = x2 = %.2f",x1);
* * * * *** ** * ** ** ** **** *
***** **** ** *** * *** * *
*** *** ******** * *** ***** * ** ** ** **
*** *** **** * *** *** **** * ** * ** * * * * * * * *** ** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * * * * * * * * **** **** * * ** * * *** ** *** * * ***** * * * * * *** *** * = *** * **** * * *
* * *** * * ** ** **** * * * * ** ** * ** * *** ** ***** ***** = ***** ** ** * ** * * * ** *
* * * **** *** * * * * * * *** * * * * * *** *
* * ******** **** *** **** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* *** * ** * ** * * *** **** a,b,c,x1,x2,D;
* ****** ** * * * * * ** ** %f **** * ** * * ****** **
** * *** * * **** * * * * * *
* * ** ** * *** = (-b + sqrt(D))/(2*a);
* * ** **** *** ** * ** = (-b - sqrt(D))/(2*a);
*** ** ** * *** ***** * * ****** *
**** * ** ** * *** * ** **** ** *** * * ***** ** ****
** * * * *** ** * * ******* * ***** * * **** *** ** * * * * ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
** ** ** * ** ** * * * ** * ******* * * ** ** * * * * ** * ** *** ** *** = %.2f\n",x1);
** * * * **** * ** * ** ** * * **** * * *** * *** ** * * ***** * * = %.2f",x2);
**** * ** *** *** * ********* *** * * **
* ** * ***** **** *** if(D==0)
* * * * * ** * ** ***** * *** ***
**** * **** ** * ** * * * ***** * * * ** **** * ** * ** ** * * ******* * ***** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
************ *** * * ** * * ** * *** * ** ** **** * ** ****** * * = x2 = %.2f",x1);
* * * ** * * ** ** * ***** * * * ** * ****
* ** ** * * * * **
* * * * * ** ** * ** ** * * *** * * ****** *
** **** * *** ** * * * * ** * ***** ** * * *** * *** *** * ***** * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* ** ** ***** ** **** * *** * * * ****** ** ** *** * * * * * ** ** * * *** ** ** = ** ** ** * * *** *
* *** * ** *** * ** * ** *** * * *** *** *** * *** * * * * * ** * * = * * * * * ** * ** * *
* ** **** ** * **** * * *** * ** * *** * ***
** ** ** * * *** * ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* *** ** * **
* * * * * * *
int main()
{
** ** * * **** ***** a,b,c,D = 0,x1 = 0,x2 = 0;
** *** * **** *** * * * **** ** * * * * ** ** ** *** * * *

* **** * * ** * * *** ** ** * ** of %.2fx^2 + %.2fx +%.2f = 0 * * **** *
** **** * ** = (b*b-4*a*c);
*** * ** ** * *** (D < 0)
** * ** * ** * *
** ******** ****** * * ** *** ** complex and * * ** * * * **
* * * * * ** * *** * * **** = * * * * ****** *** *
****** **** *** * ** ** * *** * * * = ** * * *** **** *** * ** *
* ** *** ** ** * ** *
* *** ** * * ** * (D > 0)
* * ** * *** *** ** *
*** * *** * * * ***** ** real and ** ** * ** * **
* ******* * **** ** *** *** *** *** * = *** * + sqrt(D))/(2*a));
* * ** * * * **** * * * * * * *** = %.2f",(-b - sqrt(D))/(2*a));
* ** ** *** * ** * **
* * **** * *** * * * *** (D == 0)
* ** * ** **** *****
* * ***** * * **** * * * ** ** * real and same\n");
** * * * * ** ** * *** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** *** * * ** *** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* ** ***** *** *
* ** ** ** *** **
int main()
{
*** *** * ** * ** ***** * * a,b,c,D = 0,x1 = 0,x2 = 0;
*** * ** * ** * *** * * ** * * * *** ***** ** ** ***

***** ** * **** * ** * ** * *** * of %.2fx^2 + %.2fx +%.2f = 0 * * ** ** *
** *** * * * * ** * = (b*b-4*a*c);
* ** ** ******** ** ** (D < 0)
*** *** * ** **
* * * *** * * *** ** ** * complex and * * * * *
* ** * *** ** ** * ****** ***** ** * = ****** * * * * ** * ** * *
* ** * **** ** ** ** * = ** * *** ** ** ******** **
* ** * **** ** **** **
*** * * ** * * * * ** ** ** (D > 0)
** ** **** * ** * *
*** ** ** ** **** *** * ****** real and ***** *** *
* ** * *** * * * * * = * ** * + sqrt(D))/(2*a));
** * ** ** * ******* ** * * * * = %.2f",(-b - sqrt(D))/(2*a));
* * * * * **** ** **** *
*** ** ** * * * ** (D == 0)
** * ***** **** ** ***** **
** * * ** * * *** *** ** real and same\n");
*** * * ****** * *** ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** * ** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ** **
* * ** * *
int main()
{
** ** * * * *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** ** ** * **** **** *** *** *** ** ** * ****** * *

*** * ** ** * *** ** ** ** ** **** ***** * of %.2fx^2 + %.2fx +%.2f = 0 * ***** **
**** ** **** * ** ** * = (b*b-4*a*c);
**** * * * * * * * ** (D < 0)
* * * **** *** * * ** ***
* * ***** * ** * * * * * ** *** complex and ** * * ** ***
* * **** ******* * * ** * * * = * * *** ** ** *** * * **
** * ** * *** * ****** * * ** * = * **** * * ** ***** *
*** * ** ** * ***
* ** * ** * * * * ** ** (D > 0)
* * ** ** * * ***
*** * ** ** * **** * * * real and *** *** *** ** *
* * ** ** ** ***** * ** * *** * * = *** * ** * * + sqrt(D))/(2*a));
* ** * *** ** * ***** * * ** = %.2f",(-b - sqrt(D))/(2*a));
**** * * *** ** * **** **
* *** * ** *** *** (D == 0)
* ***** *** * *****
* * *** ** * * *** * ** **** real and same\r\n");
* ** *** **** * ** *** ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
***** ** ** * ** ****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ** *** * * *
* * * * **** *
int main()
{
* **** ** ** * * *** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * *** * * ** ** * * * * *** * ** ** * ** *** *

** * ** * * ***** * **** *** ** of %.2fx^2 + %.2fx +%.2f = 0 ** **
**** ***** ** * * *** ** = (b*b-4*a*c);
* * ** *** ** ****** (D < 0)
** * ** * * ** **** *** *
** * ** ** ** ** * *** *** * complex and * **** *
* *** * ** *** * ** * * ****** = ** * * * * * * ** * ***
* ******** ** * ** * ** * **** * ** = * *** * * *** * * * * *
* * * * * * * * * ** *
****** ** * * *** ** *** (D > 0)
** **** * * ** ***** **
* * ** * ** * ****** * ** ** real and * **** ** * * *
* * * *** ** ***** * ** * *** = * * * * * * + sqrt(D))/(2*a));
* * * * ***** * * ** *** * * **** = %.2f",(-b - sqrt(D))/(2*a));
* * ** * **** * * ***
**** ** **** * ** *** (D == 0)
*** ** * *** * **
****** ** * ***** * *** **** * real and same\r\n");
* ** ** *** ****** ******** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
***** * ** * * * *
***** ****** ***
int main()
{
* **** * *** *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * *** *** * * ******* ** * * * ****** * ** ****** *

** *** * * * * *** *** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** *** * * * **** ** = (b*b-4*a*c);
** **** * ** * ** * = (-b + sqrt(D))/(2*a);
* * * ***** * * *** * = (-b - sqrt(D))/(2*a);
* * ** ** * * *** ** *** * (D < 0)
* ** * * * ***** * **
*** * * *** *** * *** ** *** complex and * * *** ** **
* * **** *** * * * * * * *** = * * * **** ** **** *** *
* **** * ** * **** ** ** ** *** * = *** * * * ** ** ** *** **
* * ** * * *
**** * *** * ** * * * (D > 0)
** * * *** ****
* * ** ** ** ** ** ** real and * * ** * **
** ** ** * ** * * *** * ** = * * *
** ** * * ***** **** * * * ** = %.2f",x2);
**** ** * ** *
* * ** * * **** *** *** (D == 0)
***** * * * ** ** * * *
** * *** ** * ** * ** ** ** real and same\r\n");
** ** ** ** * * * *********** * * * * = x2 = %.2f",x1);
* ** *** ****** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.235
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users