0 like 1 dislike
14.7k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 14.7k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
** * *** * *
***** * * * ** * *

int main() {
***** ** * * * * ****** ** * ** ****
***** *** *** * ***** * *** * * ** %f * * &a, &b, * * ***
**** * ** **** *** **
* * ** *** * * * * ** *** *** {
* * * ** * * * * * **** * *** * * ** * *** **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * * = * *** = ***** **** a, b, c, (-b)/(2*a), * * * (-b)/(2*a), * * *
*** * **** **** * ***
** * *** *** * * if(d==0) {
* *** *** *** ** *** **** ** * ** ** * *** *
* * * * ********** **** * * * *** ** ***** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** ** ** **** a, b, c, x1);
* ******* * **** ** *
** * ** ** * *** ** ** *** {
* ** ** ** ** ** * * * *** * * * ** *** * *** ** **
* * * *** * *** ** *** *** ** * * ***** * *
* **** **** ********** * * ***** ** * * * * * * * ** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and * **** ** = %.2f\nx2 = * * ** ** a, b, c, x1, x2);
* * * **** ***** ** **
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * ***
******* *** ***
#include ** * **** * *

int main()
{
*** *** ** ** * ** ** ** * * * *
***** ** *** ** * ** *** ** ** %f ** * * * * * *******
* ** ** ** * ******** **** *
** * * * * * * * * ** ** * ** * *
* * ** * ** *** *** * ** *****
** ** ** * * * *** * *******
* * ** * *** ** ** * * ** **** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * * ** = %.2f\nx2 = *** ***** * ** *
*** ***** ** * ** ** if(D==0)
* ** **** ** ** * ** * ** ** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * ** *** *
********* * *** *
* *** ** ***** *** * ** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * = * * * = * *** ***** * * *** ** * ** ** ** * * *** * **
** * *** ****** * ***** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** ** *
* * * * **** * *** **
*** * * ** *

int main()
{
** * * * **** * *** * ** * ***
* * ** * *** * ***** ** * * ****** %f ** * ** **** * *** ***** ** **
**** * * * * ** * * *
** * * * *** ** ** * **
** ***** * * ** ***** * * * * ***
* *** * * ** * ** * * * *
* ** * ** *** * ****** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * * *** = %.2f\nx2 = ** * *
********** * * * * * ** ** * ***
******* * * * ** * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * **** * **
** * ** ** *** * ** ***
** ** **** * * * ** * *** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * ** = %.2f + ** * = %.2f - * * * * ** *** *** * *** **** * *
**** *** * * *** * ** ** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * ** * * ** * ****** a,b,c,x1,x2,D;
**** * ***** *** **** ** **** * %f **** * * * ***** * * ***
* * * ******* * * * ****
** *** * * *** * ** * = (-b + sqrt(D))/(2*a);
** ** **** * ** * * = (-b - sqrt(D))/(2*a);
** ***** *** * ***** * *
* ** *** * * * * ** * * * *** *** * *
** * ** ******** * * ***** * ** * ***** * * *** *** ** * ****** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * * *** ****** * *** ** *** ** ** ** * * *** * * *** ** ** * * *** = %.2f\n",x1);
* ** * * * * ** ** * * ** * *** * * ***** * ** **** * ** ** * * * *** * **** = %.2f",x2);
* ** * * ** * ** * * * **** * *** *
* *** * ******** * * if(D==0)
*** ** ** ** * * ** * * ** *** *** ** * * **
* * * * * ** ** ** * ** ** ** * ** * **** ** * ** **** * * * **** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
*** ** ** ** * * **** **** ** **** ******** * *** * * ****** * * ***** *** * * * = x2 = %.2f",x1);
* * * * * **** * * **** * *** *** *** * * **
* * ** * ** *** * **** *
** * * ** * * * *** * * * ** *
** ***** * * * ** ** * * ** ** * *** **** * * ** * * *** * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * * * *** *** * ***** **** * ** * * ** * * ***** *** * ****** * * = *** ** * * ** * *** **
*** * ** *** ** * ** ** * * * ****** * * **** ** ** * ****** * ** ***** ** **** **** * * = * * **** * * **
** ** ** * * ***** ** * * **** **** *
*** ** * * * ***** * ** ** * ***** * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * * * ** ** ** **** ** a,b,c,x1,x2,D;
* ******* **** ** *** ** * * * * ** %f ******* * ** ** * * * *
* * **** ***** * ** ** ** * ** *
* * * ** *** ** ** ** ** = (-b + sqrt(D))/(2*a);
*** ** * ** * *** * *** = (-b - sqrt(D))/(2*a);
* ******* ** *** * ** ** ** ** ***
* * * * ** ** * * *** ******
* **** * ** ** ** ****** * * * * ** * * **** ** * * ****** * * ** *** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* **** *** *** * *** ********* * ** ***** * *** * * * * * ** * * = %.2f\n",x1);
** ***** ***** * * ** * * ** ** *** ** * ** * ** * * ** * * = %.2f",x2);
** *** ** *** * ** * ** ** * * ***** **
* *** * ** ******* * if(D==0)
* * *** ******* ** * ** *** * *** * ****
* **** ** * ** *** ** ** * * ****** ** * * * ** **** * ** ** * ** **** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** * **** ** * ****** * ******** * ************ * * * ** ********* *** * = x2 = %.2f",x1);
** * ** * *** * ** *** **** ** * * *** ****
* ** * * ** *** * **
* * ** ** ***** * * **** * ****
* ** * * *** * ** * ***** *** **** * ** ** *** * **** * ***** ** ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * ** *** * ** * ** *** *** ** * ** **** *** **** ***** * * * * ** = * *** ** * ** ** ** *
* ** * ** **** ** * * * ** * ** ** * * * ** ** ** ** **** *** **** *** ** = ** * *** * * * *** * **
* * * * *** * ** ** *** ** ** ** * * ** *
* **** ** ** ** ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* * *** *** ** *
*** * *** ** **
int main()
{
* * ** ** *** ** * *** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** ** * *** ** * ******* ** * * * ******** * **** ** **** *

* * **** *** * *** **** * * ****** * of %.2fx^2 + %.2fx +%.2f = 0 * *** * **
** * * * ***** * = (b*b-4*a*c);
* ** * ** **** **** * * (D < 0)
*** ** * ****** * * * * *
**** ** * * * ** * ***** *** complex and ****** ** * **
**** * * ** **** * ** * * ** ** * = **** * * * * ** * *
** * * ****** **** ** * ** ** * * * * = ******** * ****** * * *
* ** * **** * **
** * *** ** ***** ** ** *** (D > 0)
** * * **** ** *
**** * *** * ** * *** ** * * *** real and ** * *****
*** **** ** * **** * ** *** = * *** * * + sqrt(D))/(2*a));
*** ** * ** * **** **** * ** = %.2f",(-b - sqrt(D))/(2*a));
******** ****
* ** * * * * **** **** ** (D == 0)
*** ** *** **
* ** * ** * ******* * **** real and same\n");
* * *** * *** * * ** * ** *** * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** *** ** * * ***** **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
** ** ** * **
**** * * ****
int main()
{
***** * * * ** * *** * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** * * * ** *** **** * * ****** * * ***** ********* * * * *

** *** ***** ***** **** * ** *** * * of %.2fx^2 + %.2fx +%.2f = 0 * ** ** ** **
* *** ** ** * ****** * = (b*b-4*a*c);
** ** ** * *** ** *** (D < 0)
* **** * * * * ** *
* ** * * ****** * * * * complex and **** *
*** * * *** ******* * * *** * = * ** * * * * ** * ****
** * * * ** * ** * ** * ****** ** * = ** **** *** * ** *** ** *
*** ******** ** ***
* **** *** * * *** * * (D > 0)
** * ** * ** **
*** **** * * * *** *** * * ** ** ***** real and ******* * *
*** * *** *** * * * **** * * * * = * ** * * + sqrt(D))/(2*a));
* ***** *** ** ** ** *** ** ** ** = %.2f",(-b - sqrt(D))/(2*a));
* * * * * ****
* *** ************ ****** (D == 0)
* **** *** ** ** ** * *
* **** * * ** * * *** * * real and same\n");
* * * * * ****** *** ** ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ** * * ** ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** * ** ** * **
** * * * * *
int main()
{
** **** * * ** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
*** * * * **** * * * * * * ** ** * * * ** ** **

* * * * * * * **** * ** ** ** * of %.2fx^2 + %.2fx +%.2f = 0 ** * *** *
* ** ** * ** *** * ***** = (b*b-4*a*c);
* * * ** **** * ** * (D < 0)
*** ** * ** **** **
** *** *** * *** *** * * **** * **** complex and * *** ** * *
* * *** ** ** * ** * *** * ** *** * * * = ** * * * **** *** * *****
* *** * *** * **** ***** *** * * * = **** ** * **** *
* * ***** ** * *
* * ** ** *** *** (D > 0)
**** ** * ** * ***** ** *
* * * ** * * * * * * *** ***** ** real and ** * * * * ****
* * * **** *** * ***** ** = ** **** ** * + sqrt(D))/(2*a));
** * *** * * * ** ** * * * **** = %.2f",(-b - sqrt(D))/(2*a));
* ** * * * * * * * *
* ** * * * **** * (D == 0)
*** * * ** * ***
* **** * **** * ** ***** * ** real and same\r\n");
* *** **** ** ** * **** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ***** *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * * *** *
**** * ** * *
int main()
{
* * * *** ** *** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * *** * ** *** * * * * * * *** ***** ******* **

* *** ** * ****** ************* of %.2fx^2 + %.2fx +%.2f = 0 * * **** *
* ** ** * *** ** = (b*b-4*a*c);
**** *** ** *** * *** (D < 0)
* **** * * *** *** *
* ** ** * ** * * * **** * complex and ** * * * *
* *** ** * * ** * ** *** * = ** * * ** * ** ** * *** * *
* * ** * * * ** * *** * **** = ***** * * *** ** * **
** *** ** ** * ** *** * ** *
* *** * ** ** **** ** (D > 0)
** * ****** ** ** * *
** * *** * *** * * ***** * real and *** ** * *
***** ** ** ** **** * * = * * * + sqrt(D))/(2*a));
*** ** ** ** ** * ** * = %.2f",(-b - sqrt(D))/(2*a));
**** ** * ** *** *** * **
* ****** ** * ** (D == 0)
** * *** * * ** ** **
* * * * * ** * **** * ** real and same\r\n");
* * ** **** ****** ** * * **** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
**** *** **** ** * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** * * ** *** **
********** * *
int main()
{
* * **** ** *** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
***** * ** * ** * * * * * * *** * ** * * * *

* * ** ** ******** * * * **** * ** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** ***** *** ** *** ** = (b*b-4*a*c);
** ** *** **** *** = (-b + sqrt(D))/(2*a);
* ****** * * *** * **** ** * = (-b - sqrt(D))/(2*a);
* * ****** ** ** * ** * * (D < 0)
**** ***** * *** **
* * * **** *** *** ** * * *** * complex and * * ** *
* * * ** * *** ** * * ** * = * **** * * *** * *
** * ** **** * * ** ** * * **** ** = * *** *** * * * ** * * ** *******
* * *** **** ** ***
* ** * * **** * ** **** *** (D > 0)
** * * * * * ** *** *
********** * * * *** ** ***** real and * ** *** *
**** * * ** * *** *** * * **** = * ** * ** * **
* * ** * ***** *** **** * = %.2f",x2);
* *** * **** * * *
* *** * * * **** * * (D == 0)
** **** * * * * ** **
*** **** **** ** ** **** *** * ** * real and same\r\n");
* ** * * * * ********* * ** * ** *** = x2 = %.2f",x1);
** ** ******* * **** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.179.203
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users