0 like 1 dislike
9.4k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 9.4k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* **** * *****
* * *** * **** *

int main() {
**** ** * ** * ***
* * * * ** ** **** ** ** * %f ** **** &a, &b, ** * *
* * ** * * **** ** *** * ****
******* * * ******* * * * * {
* ** *** * *** * **** ** *** * **** * ** * * ***** *** **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * ** = ** * = * *** * ** * a, b, c, (-b)/(2*a), **** * (-b)/(2*a), * * **
* * * *** *** **** *
*** *** **** * * * *** ** ** if(d==0) {
* ******* * ** ******** * * ** ** ***** * *
** *** **** **** ** ** * * ******* *** **** ** ** *** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * a, b, c, x1);
** * * ***** ** ***
** * * *** * * * * ** * ****** * * {
* * * ** *** ** * * ** *** * ** ** ** *** *** **** * * **
* ** *** * ** ******* * ** * * * * **** ** * ***** *
* * ** * *** * * ** * ** * *** * * ***** * * ** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * = %.2f\nx2 = * ** ** a, b, c, x1, x2);
*** * * ** ** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *** ****
** * * * * ** *
#include * * * ** **

int main()
{
* * * ** * * * * * * * * **** ***
* ** ** * * * * *** * ** ** %f ********* ** ** * * * ****
* ** * * * * ** * ****** * * * *
* * ** ***** * * ** * **** * ****
* * *** * ** * ** * ** * ** * * ***
** * * * *** *** * ** * * * **
** * **** ** * *** * *** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * = %.2f\nx2 = * * ** **** **
** * * * * ******** * *** if(D==0)
** *** * ** ** *** * *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * *** **
**** *** ** **
* ** ** ** ** ******* ** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ******* = ** = * ***** * ** **** *** * * ** * * *** * *
** * ** ** * * **** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** **** * ** **
** * * * * ** **
** ** ** **** * **

int main()
{
***** ******* * ** ** * * * * * *
********* ******** ** * * %f * **** * * ** ** ***
* * * * * ********
* ***** * **** * ** ** * * * **** * **
* * * * *** * ** * * * *
*** *** * * * * *
** * * * * *** ** ** * * *** ****** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and *** * = %.2f\nx2 = * ** ****
* ** ** * ** * **** * *
** * * * ** **** * *** * * * **** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * **
* * ** ** * **** ** **
* * * *** *** * ***** **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ******* *** = %.2f + *** = %.2f - *** * ** ** ****** * * * *
*** *** **** *** * ** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * ** * * * * *** ** ** * a,b,c,x1,x2,D;
***** ** ******* ** * *** **** %f * * ***** ** ** * ** * * *
* * ****** ***** * ***********
** * *** * * *** * = (-b + sqrt(D))/(2*a);
* **** ** ** * *** = (-b - sqrt(D))/(2*a);
* * **** ** * * *** * ***
*** ****** ** * *** ** ** ** * * **** * **** * *** ** * *
* **** * ** * * ** **** ***** * *** ** *** * ********** ** * * * ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * ** * * * **** **** ** * **** **** *** * ****** * ** * *** ** * * = %.2f\n",x1);
* * ***** ** * ****** * ** * * ** * ** * * ** *** * *** ** *** * ** ** * ** = %.2f",x2);
*** * ***** ** ** * ** ** * * * ** * * ** * ***** *
* * * * * * * **** if(D==0)
* * *** * ***** ** * * * ** * ***** *****
* * * * * * * ***** * **** ******* **** * * * * * * ** * * **** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
** *** * ****** ***** ** **** * ** * * *** ** ****** * * * *** * * * *** = x2 = %.2f",x1);
***** * * *** ** * ***** *** ** ** * ** *** *
* ** ***** ** * * *
** **** * *** * * ****** *** * * * ****
* ** ** * **** **** * * * * * * * ** *** * * ** * * * ** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * ** * *** **** * * * * * * * * ** ********** ** *** * * * ***** * = * * ****** * * * * *
* ** ** ** * * * * ** * *** **** * * * * *** ** ** *** * * ** * ** * **** = **** * * * * * **
** ***** ** *** * * ** *** *** * * * * ****
* ** * * * * * * * ** * * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** ***** ***** *** ******* a,b,c,x1,x2,D;
**** * ** ** ** ********* ** * * %f ** *** *** * ** * * * * *
* * * * * * ** **** * **
******* ** ** **** * = (-b + sqrt(D))/(2*a);
* ** ** * * * * **** ** *** * = (-b - sqrt(D))/(2*a);
** * * * * ** *** * ** *
* * * * * ** * **** ** *** * * ***** * **
* * *** ** ** * * * * *** * **** *** * * * **** **** * * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
**** ** ** * * * ** ** * *** * * ** *** * ** **** ** * * * ** ***** ** = %.2f\n",x1);
** * ** ***** ** * * ** * ** * **** * ****** ** * **** ** * ** *** **** = %.2f",x2);
* * * * * * * * * *** * * ** *** *****
* * *** * * * * if(D==0)
* ** * *** *** **** * * ** **** ** * ** **** * *
* * ** * * **** * ** * *** * * ******* * *** ** * ** * * ***** ******* * *** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* * * * * * * * ** *** ** * * * ***** ** ** *** * * * * ** * ** ** ** *** = x2 = %.2f",x1);
* * * *** ** * ** * ** ** ** * **** *****
* ** * ***** * * * *** **
* * * * * * ** **** ** * * * * ***** *
** * * ** ** ***** *** * *** * * * *** * * **** * * *** *** *** * * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * *** ** **** * * * * ** ** ** * * * ** * * ** ** ** * * ** ** *** **** = * * ******* ** * ***
** * * * * * ***** * * ** *** **** * ** *** * ** * ** ** ** ** * ** = ******** ***** * *** *
* ****** ** ** ** *** *** *** * * * * **
* * * *** *** ** ** *** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
** *** * *** * ** *
* **
int main()
{
** *** *** * ***** * a,b,c,D = 0,x1 = 0,x2 = 0;
* * * * ****** * ***** ** ** ** **** * ** **** * * ***

*** * ** * * *** * * * * *** of %.2fx^2 + %.2fx +%.2f = 0 * * * ** **
* * * * * *** ***** = (b*b-4*a*c);
*** * * * * * ** * * * **** (D < 0)
** * * * ** ** *** *
***** * **** * * ** * ** ** ** complex and * * * * *** *
* * ****** * * *** * * ** * ** = ** * * *** * * * * * *
* ****** * ** **** * * **** * = * *** ** * ** ** *
*** ** ** ** * *** * *
** ** ** * *** ** ** * *** (D > 0)
* **** ** ** ** **** ** *
*** *** **** ** * * * * * * ** real and ** * ** ****
* ***** *** *** * *** * * ** * = * ** ** * **** + sqrt(D))/(2*a));
* *** * * *** ** * *** ** * * * * = %.2f",(-b - sqrt(D))/(2*a));
** * ** ***** * * **
** * *** *** * ******* (D == 0)
* * * * ** *** *** *
** **** * ** * **** *** * * real and same\n");
*** * * * ***** * ** ** * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ***** * * * * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * ** ** **
* ** * **** *
int main()
{
**** * * * ***** ** * * * * a,b,c,D = 0,x1 = 0,x2 = 0;
**** ** * **** * *** ****** * **** * ** * ** * * * *** *

* ** * ** **** ** * ** ***** **** of %.2fx^2 + %.2fx +%.2f = 0 * ** * *
* * * *** * * * * ******** ** = (b*b-4*a*c);
* * **** * * *** * (D < 0)
* * * *
* ** * ** ** ** * * * complex and ** **** **
*** ** * ** ** * ** ** * * * *** * *** = *** ** ** **** ** ** * * ** **
** ** * * * * ** ** = * * * ** ** * ******* * *
* *** * * *** ** ***
** *** * * *** ** * ** (D > 0)
*** ** * * ******* **
****** ****** * ** ** * ** real and *** *
** * ** ** *** * * ** * * * * = *** * * ** + sqrt(D))/(2*a));
**** ***** ****** * ** ***** * = %.2f",(-b - sqrt(D))/(2*a));
** **** * * * ** * *
******* *** ***** * **** ** (D == 0)
* * ** * * ** ** * * **
* * * * ** ** * ** ** ** * * ** real and same\n");
***** * * * * ** * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** *** *** * * * *****
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** ** *
* * * ** ** ** * * *
int main()
{
**** ****** ** * * * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* *** * *** * **** ** * ** * *** * *** * * ***

* * **** *** ** * ** *** ** * of %.2fx^2 + %.2fx +%.2f = 0 ** **** ***
*** *** * * *** **** ** = (b*b-4*a*c);
*** * * * * ** * ** (D < 0)
*** * *** *** ** * * **
* ** *** * * ***** * * * * *** complex and ** ** ** * * *
* * * *** * ** ** * * * ** * = *** * * ***
*** ** * * ******* ** * * ***** = **** * ** ** ***** *** * *
* ** *** * * ***** ** *
* * * *** ** * ** (D > 0)
** **** ** * ****
** ***** ** ** *** * * * * * * real and *** * ** **** *
** * * **** ** * *** * * * = **** ** ** * * + sqrt(D))/(2*a));
**** *** ** *** * * * ** ******* = %.2f",(-b - sqrt(D))/(2*a));
*** * ** ** *** ***
* ** * ** ** *** * **** (D == 0)
** **** ***** * ** ** * *
** * * * * * * **** * ** real and same\r\n");
* ******* * * * * ** * ** ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* *** * ** ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * * *
* * ** ** **
int main()
{
* * * * * * * ** *** * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * *** * * * * ** ** * * ** *** * * * * *** *

* * * * *** ** * *** ***** ** * ** *** of %.2fx^2 + %.2fx +%.2f = 0 ** * ****
* * **** **** ** * = (b*b-4*a*c);
** ***** * * * * (D < 0)
* ** *** ** * * ** **
*** **** * ** * *** * *** ***** ** complex and * * * ** *
**** * * * * ** ***** * = * * * * * ******** *
** ** * * * * ** * ** * * * = ** * ** ******* ** *
** *** * * * ** **
* * ** **** * ** * * * * (D > 0)
* * *** ** * **** * * ** * ***
** ** ** * ****** **** * * real and **** * *** * **
*** * * ** * * * * * *** * = * * * **** * + sqrt(D))/(2*a));
* ** ** * * * *** *** *** * **** * = %.2f",(-b - sqrt(D))/(2*a));
* * * * * ******* ** * * *
***** * ** * ** ** (D == 0)
****** * * ****** ****** **
* *** * * * * ** * *** * ** real and same\r\n");
**** * ** *** ** *** ** ***** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * *** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * ** * *
* ** * ** *
int main()
{
* * ***** ** ** ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
******* *** * * * * * ****** * **** * **** ****

* * * ** * * ***** ** * *** * *** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
*** * * * ** ** * ** * *** = (b*b-4*a*c);
* * * * * ******* = (-b + sqrt(D))/(2*a);
** * * *** * * * **** *** * = (-b - sqrt(D))/(2*a);
** * ****** ** ** * ** (D < 0)
** * * * ****** *
* *** **** * * * * * * * * complex and * *** * *
* *** ** * * **** *** ** * * = **** *** * * * * ** *
** * ** * * ** *** * * **** * ** * = * * * * * * ** *** * *
* * * * * * *
*** * ** * * *** * * ** (D > 0)
* ****** ** * * * ** *
** ** ** ** *** ** ** *** *** * ** real and ** ** * * * ****
*** * **** ** * ** **** ** *** * = *** *** * ***
* ***** * ****** *** ** ** ** = %.2f",x2);
* ******* *** ***** * *
* ** ** * ** ** * ****** (D == 0)
* ** *** ****** *** **
* * * * * ** ** ** * real and same\r\n");
*** *** ** * * ** * * * * ** ** * = x2 = %.2f",x1);
* ** ** * * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.127.75
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users