0 like 1 dislike
9.1k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 9.1k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* ** **** * ** * *
* * *** ** **

int main() {
** * ** * ***** * * ** * * ** *
** **** * ** ******** * ** * ** %f * * * &a, &b, * * *
** * * *** * * * ** * ** **** **
* ** *** * ** *** ** ** *** ** *** * * {
* ** *** **** ** ** **** ******* * * ***** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = ****** = * *** **** a, b, c, (-b)/(2*a), ** ****** (-b)/(2*a), *** * **
** * * ** ** ** *
** * * *** * ***** * * if(d==0) {
* ** * ******** * * * * ******* ** * * * ** **** **
* * ** * * * ******* **** ** ** *** ** ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * ** a, b, c, x1);
* *** * * * ***** *
* * ** * * **** *** * * *** * ** ** ** * {
** * ** * * * * ****** ** ** * ** * * *
* * * ** * ** * * * * * ** * * **** ** * * ** *
* ** *** ** * *** * ****** * ** ** **** * * ** * * ** ******* of %.2fx^2 + %.2fx + %.2f = 0 are real and ** = %.2f\nx2 = * a, b, c, x1, x2);
** * * * **** *** ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * ***** * *
* * *** **** * **
#include ** ******** *

int main()
{
*** * *** ** * * * ** * **
** * * * * * ** * ** *** %f * ** * * * * **** * *
**** ** ** ** * * * ** **** **
** **** ** ** * * * *** * ***** *
*** **** * * ** * * * * * * * * ** *
* ***** ** ** ** * * ** ** * ***
* ** *** * ** * **** **** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and *** * = %.2f\nx2 = * ** * *
* * ** * * ***** ** if(D==0)
* * * * ** * * **** * *** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * **** * **
** ** *** ** ***** *
* **** ** * ** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * = * *** * = ** ***** * * ** **** * *** ** * *** * ** *
** **** * ** **** * * **** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * ** * * *
* *** ** **** ***
* ** * * **** *

int main()
{
* ** * ****** ** * * * * * *
* ** *** **** ** * * *** * * * %f * *** * * ** * * * **
* ** **** **** ** ** * * * *
* * * ** **** * * ** *** ** ***
*** * ** * * ** * * *** * **
* ******* **** ******** * * *** ***
**** * *** * * * * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * *** * = %.2f\nx2 = *** **** *** ** *
* ** ** * ***** ** * * * ***
* * * * * *** * * **** * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * *****
* ** ** ** *
** * ** ** * ** *** *** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * = %.2f + * ** = %.2f - ** ******** * * * ** *** * * ******* *
**** * * * ******* ** **** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * * *** ***** ** * a,b,c,x1,x2,D;
** ***** * * * * ** ** **** *** %f *** ** ** ** ** *** * ***
* * * * ** * * *** * ****** * **
** ******* * * ** **** * = (-b + sqrt(D))/(2*a);
* * * * * *** * * = (-b - sqrt(D))/(2*a);
* * * **** *** * ** ***
** * ** * ** * * **** * * ** * ***** * * ** ** ****
* *** ** ** *** ** * * ** * ** **** * * *** * * * ***** * * * * * **** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* *** ** *** * * ** ***** ** * ** * * * * ** * * ** ** ******** * * ** = %.2f\n",x1);
*** * * ** * *** *** * * ** ***** * ** **** *** ***** *** **** **** * * **** * = %.2f",x2);
** * ** * ** * *** ** ** * * * ** *
* * *** * ** * *** *** * * if(D==0)
* ********** * * * * * * * * * * * * *
* ** ********** *** * ** ******* * * **** * * ***** ** * ** ** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* *** *** ** ** ** * * * * * ***** ******* * *** ** * *** * ** ** **** * = x2 = %.2f",x1);
** * ** * * ** **** *** * * * * * *
* * * *** ***** ** * * *
* ** * ** *** ***** * ** * ********** ***
** * * **** * *** * ** ****** *** * ** ** * * * *** * ** ***** * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* **** ** * * * * * ** *** * ** * ** * * ** ** ** ** ** ***** ** *** * **** * = ** ** * * ** * ** *
* ****** ***** ** * *** * * * * * *** * * * *** * * * ******* * * *** * ** * = * * **** ** ** *** * * *
* ** ** * * * * * **** **** ** **** *** **
*** ** * **** * * * **** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * *** * ** * *** a,b,c,x1,x2,D;
* *** ** * ** **** ** ** ** * %f * * * * *** * * ** * **
*** * ******* *** *** **** *
****** ** ****** * * * = (-b + sqrt(D))/(2*a);
* * **** ** ** *** = (-b - sqrt(D))/(2*a);
* **** * ** * ** * * * * *
**** * *** *** *** ***** * *** ** *** * * * *
* ** ** ****** * * * *** ** ***** * * ****** * * ******* * * ** * ***** * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
*** * ** * * *** *** * ********* * *** * * * * ** *** ** ***** *** * = %.2f\n",x1);
* *** ** * * ** * * * * * * * ** * * ** * ** * * ** ** * = %.2f",x2);
** * *** * *** * * * * ** *** ***** * ***
** * * ** ** ** * if(D==0)
*** **** *** * **** * ** * **** ***** * ** ***** *
* ****** * * *** * * **** **** **** * *** ** **** **** * **** * *** * * ** *** * * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** * * *** **** * ** *** *** ** * ** * * **** ** ** * = x2 = %.2f",x1);
**** * ** * * * **** ** * * * * *** * * * *
* ** *** ** ** * *
* ** ** * * * ** ** * * * * * * ** ** * *** **
* ** * ***** ***** * * ** * * ****** ***** ** * ** ****** * * * **** *** * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** **** * ** **** * * *** *** * ** ** * * * * * * * ** * * ** * * * = * * ** ** * ***** *** *
*** ***** **** * *** * * ** * * * * ******* * * * * ** **** * ** * * *** ** = *** * ** * * ** *
**** *** ** * * * **** ** * * ** ****
* *** ***** *** * *** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
**** * * * ** ** * ***
* * * ** **** *
int main()
{
* * * ****** ** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** *** * **** ** *** * ** * * *** ** * * ** ***** **

** * * * ** ** * * *** * of %.2fx^2 + %.2fx +%.2f = 0 ** * * * * ***
* * * * ** ** *** ** * = (b*b-4*a*c);
** ** * ** ** *** ** * * (D < 0)
* *** * * * ***
**** *** ** * * * * ** * complex and * * ** ****
***** ** * * ** * * ***** * * * = * * ** * ********** ****** **
**** * ** ** * * **** * * = *** * *** ** **** *** **
********* ***** ***
* ** * * *** * * ** (D > 0)
* ** ** **** * * *
** * ** ** ** ** **** * * * *** real and **** ****** *
**** * * **** * * * = * *** *** * + sqrt(D))/(2*a));
* * ** ***** * ** = %.2f",(-b - sqrt(D))/(2*a));
** ** * * ** * ** ** *
* *** *** * *** ** * (D == 0)
***** ** ******** ***
*** *** * * * * **** *** **** real and same\n");
** *** *** * * ******** **** ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * * ** ** *** * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
** ** * * ***
* * * ** ****
int main()
{
** ** ** ** ** ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ***** ** * * ** ** ***** ** ** **** * ***** ** * ** * * *

** * ** * * ******* * ** * * of %.2fx^2 + %.2fx +%.2f = 0 *** * ******
****** ** *** * *** ** ** = (b*b-4*a*c);
** ** *** ** * * **** * (D < 0)
* * * * *** ** * ***
* * * *** * ** ** ** * * complex and ** ** **
** ** **** ** * *** * * * * * = ** ** * * ** * **
* * * ** * * * * * * * ** ** = * ** * *** *** * ** * **
*** *** **** *
* **** ** * * * * * * (D > 0)
** *** * * * * * ** **
* **** * * ** * * * ** * * real and * * **** *
*** **** *** ** * * ** ** * = *** * * ** + sqrt(D))/(2*a));
* ** ** * * ** ** * * * ** = %.2f",(-b - sqrt(D))/(2*a));
* ******* ** * * *
** * *** * ** * * * ** * (D == 0)
* * * * **** * ** *** **
** ** ** * *** * * * * ** * real and same\n");
** * * * **** ** **** * * ** ****** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** * *********
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** *** ** *** * **
*** ** ** ** **
int main()
{
** **** ** * ** * **** * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** **** *** * **** * * * * * ***** ** * * * * * ** * **

** ** ** ******* ** * * **** * * of %.2fx^2 + %.2fx +%.2f = 0 ** ** **
* * * ** * * ** * = (b*b-4*a*c);
** * * ***** ** * ** (D < 0)
** * **** * ** ***
******* ** **** * * * * * * ** complex and * * ** ** ****
**** ***** *** *** *** * * * * * = * ****** * ***** * * * ****
* ** * ** *** ** * * *** * = * ***** * * ** ** *
*** * * * ** * *
** * * * * *** ** * *** (D > 0)
* * * * * ** ** * *
********* *** ** ** ****** * real and * * *
* ** * * * * ** ** **** ** * = * * ** * + sqrt(D))/(2*a));
* *** ***** *** * **** * * = %.2f",(-b - sqrt(D))/(2*a));
*** * * ** * *** * * ** **
** * ***** * **** **** * (D == 0)
* * **** * * * *
* * * * *** ** *** *** real and same\r\n");
* * * * * * **** * *** * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * *** **** * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** *** *** ** *
**** ** *** ** **
int main()
{
* ** * ** *** ** *** ** a,b,c,D = 0,x1 = 0,x2 = 0;
*** ** ***** **** ** * * * *** * ** ** ** ******* ** * * *

* ** ***** * *** ** * *** ** * of %.2fx^2 + %.2fx +%.2f = 0 * * * * * **
* * * *** ** **** **** * = (b*b-4*a*c);
* * * ******* * * * * (D < 0)
**** * ** **** *
* * * * *** ** * * * ** * complex and ** * *** ** *
** * ** *** ** * * * *** *** = * * *** **** ** ** *** *
*** ** *** * *** * ***** ****** *** * = ** ** ** ** **** * *
* * * ***** *
***** * * * * **** (D > 0)
* ** *** * * * ** *
**** ** * ** *** * * * ** real and * ** * ** *
** * *** *** * ** * ** * * * = * *** * ****** + sqrt(D))/(2*a));
* ** ** **** * * ***** ** * * *** = %.2f",(-b - sqrt(D))/(2*a));
* * * **
* *** *** *** **** ** * (D == 0)
* * **** * **
* * ****** * ** ** * * ** **** ** real and same\r\n");
** **** * * * * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * *** *** * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * **** * ** *** ** **
*** * * **** ******* *
int main()
{
* * * * * * * * a,b,c,D = 0,x1 = 0,x2 = 0;
** **** * *** *** ** ** ** * * **** *** *** * *

***** ** * * *** * * **** * * * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* ** ** ** * ** ** * * * = (b*b-4*a*c);
** * *** ** * = (-b + sqrt(D))/(2*a);
* * * *** ** * *** * ****** = (-b - sqrt(D))/(2*a);
* ** * *** ******* * * (D < 0)
* * ** * * * * **
* ******* * * ** ** ** * * *** ** complex and * ** * *****
* ** **** ** * ** ** *** * * = * ** ** * * ** * **
* * ***** **** ** ***** * ** *** = **** *** **** * *** * *** *
** * *** ** * * ***
**** ** ** * ** ***** * * (D > 0)
**** ** ** * * *
* ** * * * * ** * *** * ** * ** real and * *** * * *
***** * * * **** ** * * ** * ** * * * = * * ********
* * * * *** * * * ** ** = %.2f",x2);
******* ** ** * *
* *** ** * ** (D == 0)
*** * * * ** * *** * **
* *** ***** **** **** **** * * * * * * real and same\r\n");
* * **** * * * **** **** * = x2 = %.2f",x1);
* * * *** * *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.7.105
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users