0 like 1 dislike
13.7k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 13.7k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
****** * ***** *** *
* *** * * **** ** **

int main() {
* ** ** * * * * * ** * *
* ***** * * * ** ** *** * %f *** &a, &b, * * *
* ** ** ** * ** **** ** **
** *** ***** ***** ** **** {
***** *** ** ** *** ** ** ** ** *** ** * ******* ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = ** * * = ** * a, b, c, (-b)/(2*a), * ** * (-b)/(2*a), *
* * * * ***** **
** ** ** ***** * ** * **** if(d==0) {
**** * * ** ** *** * ** ***** ** ** * *** ****** *** ** ** **
* ** * *** * ** * ** **** ***** * ***** * ******* ** *** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** ** * * a, b, c, x1);
**** * * * ****** ** * *
*** * * ** * * * * * * ** ** * {
* * * * * *** * ***** ** ** ** ** ** *** * **** *
* * ** **** * ** ** * ** * * *** *** **** *** ********* * *
** * **** * * * * * ** ** ** * ***** * * ** **** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and **** * = %.2f\nx2 = * * * * a, b, c, x1, x2);
** **** * ** *** * **
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ***** ** **
** ** * * ****
#include *** ******

int main()
{
** **** * * ** * ** * ** * * * * ***
*** ** **** *** *** * ** * *** * %f ** ** ** * ** *** * ***
* *** * * * ** ** * ***
* * **** * **** * * * **
*** * *** * ** *** ** * * **** *
* * *** * ** **** * ** * ** *
*** ** * * * * ** **** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and ******* * = %.2f\nx2 = * ** * *
* ** * **** *** * * **** if(D==0)
*** *** * ** * * * * **** * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * * *
* * * * ** ****** *
* ***** * * * ** * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** ** = **** ** = * ** ** * * * *** ***** * **** * *** * *
* ** * * *** * * * ** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * ** * * ** **
*** * * * * *
* * * *** **

int main()
{
***** *** * ** * ***** ***
** ** *** *** ** * *** * ***** %f * * * *** **** ***** ******
**** **** * * * *** * *
* ** * * * ** * * * **** * *
* **** * ****** ** * * * *** **
**** ** *** *** *** *** *** * *** *
* **** * **** * *** * * * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * * = %.2f\nx2 = ** * *** *******
** ** * * * ** * * * * ***
**** *** *** *** * * * * ********* of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * * **
***** ** **** * ** * *** * ** *
** ** *** ** * * * * * * * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ***** * = %.2f + * = %.2f - *** * * * *** * ** * ** * *** *****
** * ** ** *** * * * ***** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * * * ** ****** a,b,c,x1,x2,D;
*** *** * ** *** * *** ** * ** *** *** %f ** ** *** ** * * * * ** ***
* ** * * ** * * * *** * **
*** ** ** * ****** * * *** * = (-b + sqrt(D))/(2*a);
* * * ** * * * * *** ** = (-b - sqrt(D))/(2*a);
* * * **** * * **** *
*** *** * * * * ** * * ** *** ** *******
**** ** *** *** *** ** *** **** **** * ** * ** * * *** ** ** **** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* * ** * * * ** **** ***** * * ** * ** * * * * * ** * = %.2f\n",x1);
****** * *** ** **** * ** * ** ** * * * *** * * * ** ** ** * * = %.2f",x2);
*** * **** ** * * ** * *** ******** * **** *
** ************* *** * *** if(D==0)
***** ** **** * * ** * * *** ****** *** *
* ** ** * **** * * ** * * * * **** ** * * * * *** ** * ** ** * **** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * ***** ** * * * *** * * ***** ** ****** **** * *** * ** *** *** *** * ** **** * = x2 = %.2f",x1);
* ** * ** ** ***** *** * *** * ** ** *
* * **** ***** * ** *
** * * *** **** * ** ** * * ** *** * ** ******* *
** ** * ***** *** ** ** * * * *** * *** ** * ****** * * * * ****** * * *** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* ** * * * ** *** * ** ** ** ***** ******** * ****** ** ** * * ** * ** * ***** * = *** * **** * * * * * **
**** **** ***** * * ** * ** ****** * **** ** *** * * ** *** * *** * * *** = * * * *** ** * *** ** *
** * ** * ****** ** * * * **** * ***** *
* * ** * ******* ** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** *** * * *** a,b,c,x1,x2,D;
* * * * ** * * * * * *** ** %f * * ** ******* * * *
** * **** * * * *** * **** *
** ** *** *** *** ** = (-b + sqrt(D))/(2*a);
* *** * ** *** **** ***** * * = (-b - sqrt(D))/(2*a);
** * * * ** ** * ** *** * * ** * **
** ** * * ** ** *** ** * * * * *** * ***
** *** ** * * * ** *** ** * *** * * * *** * * ** * * * ** * * * ** **** *** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
***** * * ** **** * *** * ** * * * * ** * * ****** * ****** ** ** * * * = %.2f\n",x1);
**** * * *** ******* ** ** * * * **** * ** * ** * *** *** ** * = %.2f",x2);
** *** * * * ***** ** * * * ** *** ****** * *** *
* ******** *** ** * if(D==0)
* ** * ** ** * * * * * ** ** * * * * *** *
* ** * * ** **** * * *** ** * * * ** ** **** * * ** * *** ** * * * * ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* *** *** * ****** *** *** *** * *** * * * * *** ** * = x2 = %.2f",x1);
** *** ****** *** *** * *** ** ** **
** * **** * ** * *
* * * * * * * ** * ** ** * * ** * *
* * ****** ***** *** * ****** * ** * ** **** * **** ****** * **** * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * * * * * * * * * ** ** * * * * *** ** * ** ******** * ** * * * * = ***** * ** * * * * * * *
***** ** *** ** ** ** ** * * ** *** * * * ** * **** * * *** **** ** ** * = * * * * * ** ********
*** ** * **** * * ** *** * * ** * *
** * *** * ** ***** * ***** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** * **** ** *
* * * * * ***** *
int main()
{
* **** ***** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
* * ** ** ** * * ** ** *** ** * ** * * *** * * ** *

** ***** ** *** * * * ** ** of %.2fx^2 + %.2fx +%.2f = 0 * * *
* * * * * *** * *** = (b*b-4*a*c);
* **** * * **** * **** * (D < 0)
** * * * ** ** ** ***
* * ** * *** *** *** * * * * complex and ** ** ****
* **** * * *** * **** **** = ** * **** ** ** * *
*** *** ** * * * * * * ** ** = * ***** **** * ** * *** ****
* *** ** ** * ** * * *
* * * ** * ******* (D > 0)
* **** * *** ** **** ****
* **** * * * ** *** * * ******* real and * * * ** **
** **** ** *** ** ** *** = * ** ** ** + sqrt(D))/(2*a));
** * * * * * * ** * * **** * * ** ***** = %.2f",(-b - sqrt(D))/(2*a));
** ** * * * ** * ** ****
* ** ** ***** * * *** (D == 0)
* ** * * *** **** * * * *
********** ****** **** * * ***** * real and same\n");
*** ** ** ** **** *** ***** * *** ** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * *** * *** ***** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* ** * *
* **** * * * ***
int main()
{
* *** ** ** * ***** **** *** a,b,c,D = 0,x1 = 0,x2 = 0;
** ***** *** * * *** ** * *** * *** ****

***** * ****** * ** ** * ** ** ********* of %.2fx^2 + %.2fx +%.2f = 0 * * ** ** *
** * ** * *** ** ** = (b*b-4*a*c);
** * ** ** ***** ** * * (D < 0)
** * * * * ** ** *** *
* * ** ** * *** ** * *** complex and * **** ** *
* *** **** **** ** * * * ** * * ** * * = ** * * ****** **** * **** * *
** * * *** * ** *** * * * *** * ** = * *** *** * *** * ** *
** ** ******** *** ** ***
***** *** ** * * * (D > 0)
* * * ** * * ****
** * * ** * **** * * * * * ** real and * * ** *******
* * * * *** ** **** * ** ** * = **** *** ** + sqrt(D))/(2*a));
* * **** ******* ** ** = %.2f",(-b - sqrt(D))/(2*a));
* ** * ** * * ** * *
*** ***** * * * * ** * (D == 0)
* *** ** * * * **** * *
* *** * * * * ** * * real and same\n");
*** *** * * ** ** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * ** * **** *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * ** * *
* *** * * * * *
int main()
{
* ** *** * * * * * **** a,b,c,D = 0,x1 = 0,x2 = 0;
* * *** ******* ** * ** ** * ** ****** *** * * * * ** **** *

**** **** * *** ***** * *** ******** * of %.2fx^2 + %.2fx +%.2f = 0 * * *** *****
* *** ********* * *** *** = (b*b-4*a*c);
***** ** ** ** ** ** * **** (D < 0)
*** * ** *
* ** ** ****** * *** * * complex and * ** * *** *
** * * * ** *** ** * * * = ** *** * *** *** * * ** ** **
* * ** * *** * * *** * ***** = ** ** * * * * * **
*** **** * * * ***
* ***** * * **** * * * (D > 0)
* ** * * * *** * **
* ** * ** * * ******* * * real and * * ***** *
******** ***** *** ** * * ** * = * * * + sqrt(D))/(2*a));
* *** * * * * * * * * * **** = %.2f",(-b - sqrt(D))/(2*a));
* * *** ** * *
**** *** ** (D == 0)
** ***** ** * * *** **
* ** * ** * * ** * * real and same\r\n");
* * ******* * ***** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * *** * * * ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* *** *** * *** *
* *** * **
int main()
{
* * ** ** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* * * ***** ***** ** * **** ** *** * ******** * * *

*** * * ** * ** *** ** * ** * * * of %.2fx^2 + %.2fx +%.2f = 0 ** * * *
***** *** *** * *** * = (b*b-4*a*c);
**** * * ** ** ** *** (D < 0)
** **** * ** *
******* * * **** * * * *** ** complex and *** ** ****** *
** ** ** *** **** ** * ** * * = * *** **** * ** *** ** * * ****
******** *** ***** *** **** ** = * ** * * ******* * * * **** * *
* ** * ***** * ***
****** * * * * ** *** ** (D > 0)
*** ** ****** * * * * ** *
*** * * **** * ** ** *** **** real and * ** * * **
** * ** * ***** ******* *** = ****** ** + sqrt(D))/(2*a));
* ** ** ** ** * * * ** * * = %.2f",(-b - sqrt(D))/(2*a));
** * * * * * ** * ***
* * ** *** ***** *** * (D == 0)
* * * ** * *** *
* * *** * ** * ****** *** real and same\r\n");
* * ******** * * * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** *** * ** ******
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ***** ***** *
* * * ***** *
int main()
{
**** * ***** * ***** **** a,b,c,D = 0,x1 = 0,x2 = 0;
*** * * ** * *** **** ******** **** ** * * **

* * ** *** ** ******* ** ** ***** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* * ** *** ** = (b*b-4*a*c);
* * **** ***** *** ** = (-b + sqrt(D))/(2*a);
****** * * * * * * = (-b - sqrt(D))/(2*a);
*** * * *** ** * * * * (D < 0)
* *** ** ** ** ** * *****
*** * * ******* *** ** complex and ** * **** ** **
* **** *** * * *** * ** ** ** ** ** = **** ** ** ** ** ** * ** ****
*** *** ** * *** * * ** * * * ** = ** * * * * ** ****
* *** ******* * * ***
** * * * * * * ** (D > 0)
*** *** * * * ** * ***
* *** * * **** * ** ** real and * *** ** ***
** ** * * ** ** * *** * * * **** = ** * **
** *** * ** ** * *** * = %.2f",x2);
* * * * ** * **** * *** *
** * * *** ** * ** (D == 0)
* * *** * *** * ** **
** **** * ** * * ** * * * * ** * ** real and same\r\n");
* * * ***** ** *** * * * * ** = x2 = %.2f",x1);
***** **** **** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.241.33
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users