0 like 1 dislike
9.1k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 9.1k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
*** ****** **
* *** ** * ** **

int main() {
* ** ****** * * * *** * * * * * **
* * ***** * ** * ** * * *** *** %f ***** ** &a, &b, ** *
**** *** *** *** * * * * * * **
* ***** ** * ** * * * * *** {
** * ** * *** **** ****** ** * * * **** ** * **** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * = ** * = * ** * *** a, b, c, (-b)/(2*a), * ** (-b)/(2*a), *** *** *
* * *** * * * **** **** *
** * ******* *** ** * if(d==0) {
** * * ** ** ****** * ****** ** ** ** ** ** ****
* * * * * *** ****** *** * * * ** * * * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * a, b, c, x1);
* * *** * ** ** * * *
** ** ** * * **** ** *** *** *** {
* ** * * * * * *** ** ** ** * ** *** ** * ******
* * ** * ** * * * * ** * * ** * ** ** ** **
**** * * * * * *** * ** ** *** *** *** * * ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** = %.2f\nx2 = * a, b, c, x1, x2);
* ***** * * ** *** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * ** *** * * *
** * * * *****
#include * ** *

int main()
{
* * * ** *** *** ** ** * *
* * ** ** ******* ** ** * ** ** * %f ** ** * * ****** * * **
* ** * * ***** *********** ** **
* * * **** *** ** * * ***** *** *
* * ** * ** * ***** * * * * *
* *** * * * *** * * **** * **
** ** ** **** ******** * ****** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ******* = %.2f\nx2 = * * * ****
* ** * * *** *** * if(D==0)
** *** * ***** ** ******* **** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * *
* * * * * ** ** * * ** *
* ** * * *** * ** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * ** * = *** * * * = *** * * ** * ** * **** ** ********** ***
** * ** *** **** * * * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * ** ** * **
* ** * ******* *
*** * *** * **** *

int main()
{
* * *** ** * ** * ** *
* * *** *** ** * ** ***** %f ** * ** * * * ****** ** *
** * * * ** *** ******* *** ** *******
* ** ***** ** *** * * *** *** ***
* * * * * * * ** * * * * ** **
** ** * ** * *** ** *
* * * * * * ** *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ****** = %.2f\nx2 = * ** * **** * *
**** ** **** *** ** * ** ** * *
* * * *** ** * **** ** ***** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** **** **
*** ** ** *** *** * *** * ***
**** * * *** ** * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * * * = %.2f + ** * = %.2f - * ** * ** *** * ** * * ** * * ** *
******* ** * * *** **** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** ** * *** ** ** ** a,b,c,x1,x2,D;
**** ** *** **** ** ** ***** *** * * %f ** *** ** **** *
** * ** *** *** ** ***** *
* ** *** * * *** * = (-b + sqrt(D))/(2*a);
* * ** * ** ** = (-b - sqrt(D))/(2*a);
** * * ** *** * * * ** ***** * *
* * * ** **** **** * * ** *** * *** * *
* * ** ** **** ** * * ** *** * * * * * *** **** ** ****** *** * ****** * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** **** ** * * * * * * *** * **** * **** **** *** ** * * ****** * * * *** = %.2f\n",x1);
** * *** * **** * ** ***** ***** ** * ** ** * ** *** ***** * ** * = %.2f",x2);
* * * *** **** * **** * ***** * * * *
*** * * * * * * ** * * * if(D==0)
* *** ** * * ** ** * * ** ** * * **
* *** ** **** * ** ** ** * * ** **** * * * * * * ** ** * ** ***** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * * * * * ** **** ** * * ***** *** *** * **** * ** ** * ** = x2 = %.2f",x1);
** ** ** * ******* *** * * *** * ** * **
* * ** ****** * * ** * * *
* * * ** ******* ** ** * ** ** *** *
* **** ** ***** ** * * ****** *** ** ** * * *** * * * * * * *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** * *** *** * * *** * ** ** ** *** * ***** * *** * **** * * **** * = ** * * ***** * * * *
* **** * ** **** **** * ** ** *** *** ***** * ***** * * * **** *** * = * ****** * * * * * **
* ** ** * **** * * * * * ***
* ** ** * * ** * * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* ** ** * ** * ** ** ** * ** a,b,c,x1,x2,D;
*** ****** ** * **** ** * *** **** %f * * * * * ** *** * * *
**** * ** ***** * *
* ** * * **** * * = (-b + sqrt(D))/(2*a);
**** * * * * * * ** * = (-b - sqrt(D))/(2*a);
* * ** * * * *
* **** * * * ***** *** **** ** ** *** * * *** **
** ******** *** *** ** ** * ** ** ****** * ** ** * ** * * * *** *** * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* ** * * * ** *** ** **** ***** *** * * * * * *** ** *** * ** **** ****** = %.2f\n",x1);
*** ** *** ** * ******* **** ** ** * * ******* * * ** *** = %.2f",x2);
****** * * ** ** *** * * ** **** ** * * *
* ** * ** * * * * * * * if(D==0)
* * * * * ** ** ** **** ** ** * *** **
**** * ** *** * * ** ** **** * * ** ** * * **** *** * * **** * *** ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* * * * * * * * **** ** ** * *** * ** * * ***** * *** *** * ** ** * **** = x2 = %.2f",x1);
** * *** * ** ** *** ** * * ** * * *
* ** *** ** * * * ** * *
****** * * * * * * ******* ***** ** * ***
* * **** * * * * ** * *** * * * **** * * * ******** **** * * ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* ** * * * * * ** * **** ** ** * * * * *** * ** * ** * * ** = ****** ** ** * ** * ** * * *
******* *** ** ***** ** * **** ** ******* * ** ** * * * * *** = **** *** *** ** * ** ** *
* * * * * ** ** *** **** * * * * ********* *
**** * **** ** * * * * * * * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** ***** **
** ** * ***
int main()
{
* * * **** ***** **** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* **** * * ** * **** * ** * ** ** ** * *** * * *** * * *

* * * * * * ** ** ** * ** ** of %.2fx^2 + %.2fx +%.2f = 0 * * * ** * ***
* **** ** * ** ** = (b*b-4*a*c);
** *** **** * *** ** * ** (D < 0)
* ** * * ** * * *
* * * * *** ** ** * **** **** * complex and ** ** **
** *** ******* * * ** ** * **** * ** = ****** * * * * ** * **** *
* **** ** ****** ** **** *** **** ** = *** ** ** *** *** **** * *** * *
* ** * *** * ** ***
** * ** *** * * *** * (D > 0)
*** * ** * * *** **
** ** * ** *** * ** * * **** real and ***** **** * *
*** * * ****** * * * ***** * **** = * * * ** + sqrt(D))/(2*a));
** ** ** * ** * * * * * = %.2f",(-b - sqrt(D))/(2*a));
** *** ** * ***** *
* *** * ** ** ** (D == 0)
*** ** *** * ** **
* * ** ** **** *** ** ** * * real and same\n");
** ****** ** * ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* **** * ** * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * * * ** * *
** * * **
int main()
{
** * ** ****** * * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * * **** ** *** * * ******** * * * *** * * ***

**** *** ***** ******* * **** ** * * * of %.2fx^2 + %.2fx +%.2f = 0 ** ***** ****
* ** *** * * * * ** = (b*b-4*a*c);
*** **** ** * * ** *** * (D < 0)
** * ****** ** * *** * **
***** * * *** ** ***** **** * complex and * **** * *
* ** * * ** * *** * * * ** = * ***** ** **** * * ** * ** ***
** ** * ** * * * * * * *** * * = ** * *** ** * ***
** * **** * * * *
* * * ****** *** * ** (D > 0)
* * * * *** * * * *
*** ** **** ** *** ** ** ** * ** real and ******* *
* *** * *** *** * ** ** ** * * *** = * ** ** * * * + sqrt(D))/(2*a));
* **** ** * * ** **** ** * ** **** * = %.2f",(-b - sqrt(D))/(2*a));
* **** * *** ** **** * ** **
* * *** * * * * **** (D == 0)
** ** ***** *** ***
* ** **** **** **** * ***** * * * ** * ** real and same\n");
*** * *** * * * ** *** ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* *** ** * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * * *** **
*** **** *** ***
int main()
{
* ** **** * * * * **** * * a,b,c,D = 0,x1 = 0,x2 = 0;
**** * *** * * *** ** *** ** * * ** *** * * * ** * *

* * * **** * ** * * * ** * *** of %.2fx^2 + %.2fx +%.2f = 0 ** *** * ** *
* * **** **** *** * * ** = (b*b-4*a*c);
*** * * *** ** * * (D < 0)
** * ** **
* **** * ** ** ** ** * complex and **** ** * * ****
** * **** ** **** *** * * = ** * * *** *** * *** *** ***
** ** * ** ** ******** ** *** ** * = *** ** * * * * ** * ****** **
* ** * * ** ** * * *
****** ** * * * (D > 0)
* ** * ** * ***** * ******** *
* ** ***** ****** * ** **** * * real and **** * *
*** *** ** * *** ***** ** * ***** * = ** * ** ** + sqrt(D))/(2*a));
* *** * * ** * * *** * * * **** = %.2f",(-b - sqrt(D))/(2*a));
* * ** **** ****** *
* * **** * ***** * * * (D == 0)
* * ** * *** ** *
**** * * ** ******** ** * * * *** ** * * real and same\r\n");
** ** * ** ** ** * ** * * ***** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * ** * **** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * ** * **
* * * ** * ****
int main()
{
* * * * **** ** ***** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * * ** **** ** * *** * ** ******** * *** * * **** * *

* * ** ** * * ** **** * *** of %.2fx^2 + %.2fx +%.2f = 0 * * * *
* * **** * ** * * = (b*b-4*a*c);
* * * * ** *** *** * (D < 0)
* ****** * ******** **
** ****** * **** ** * ** * * * * * complex and *** * *
** ***** * ** * * * * * ** ** = ** * ** ** * * * * ***
* * *** * *** * * *** ** * * ** * = * ** ** * * * **** *** **
** ** ** * ** ** *
** * * *** * *** * (D > 0)
*** *** * * * * * ** **
** *** * *** **** ** **** *** * * * real and * ** * ** *
** * * ** * **** ** ** * * = **** * ** + sqrt(D))/(2*a));
* * ** ** ** * ** * ** * *** = %.2f",(-b - sqrt(D))/(2*a));
** * * * * * **
* * ** * *** ** * * * (D == 0)
* *** ** * * ** * ** * * **
*** * ** * * **** * ** **** real and same\r\n");
* ** * **** ** * * ***** ******* * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ** ** * * * * ** * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * ***** * * * *
** *** * * ** * *
int main()
{
*** ** ** * **** * *** * * a,b,c,D = 0,x1 = 0,x2 = 0;
* * **** * * * *** *** * * * **** ** * * * * ** ** * **

* * ** ***** **** *** ** * ** * ***** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
******* ** * *** *** * = (b*b-4*a*c);
* * * * ** = (-b + sqrt(D))/(2*a);
*** * * ** * * = (-b - sqrt(D))/(2*a);
*** * * ** **** ** *** (D < 0)
****** ** *
** * ** * ** ** ** * * **** complex and * ** *** ***
** * * *** *** * * * * ** ** ** = * * * * * ** **** ***** **
* * ** * * ** * * * ***** * = **** **** **** * * ** ****
**** * **** * ** ** ***
*** * * * ** ** ***** ** (D > 0)
**** * * ** **
*** ** * * * ** * * ** * real and * * * ** * *****
**** ** * * * * * * * ** * * * *** = *** **** ***
**** ** **** * ** * * = %.2f",x2);
** ** ****** * * * *** ***
* ** ** *** * * * * * (D == 0)
* *** ** ** * ** ** ***
* * * * * *** * * ***** * * real and same\r\n");
* * ** *** * ***** * **** *** ** * * = x2 = %.2f",x1);
*** * * * *** * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.126.38
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users