0 like 1 dislike
15k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 15k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* ** ** ** * ** ***
* ** * * * *

int main() {
****** **** * ** * * ***** *
** ** ** * * ** * * * ** ** %f * * &a, &b, * * *
** * * * ** *** * **** ** ***
*** * ** * * *** ** **** * * ** {
* ** * ****** * *** ** * * ** * *** * * *** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * *** = * * = * ** * *** * a, b, c, (-b)/(2*a), *** * (-b)/(2*a), * * ****
** ** * * * ** **** ** *** *
** * ** *** *** ** ** * if(d==0) {
*** ** * *** ** ***** *** * * ** * * *** * * *
* **** * * ** **** * * ** * * * * * *** ** *** ****** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * a, b, c, x1);
* ** ** * * * ** * *
* * * * *** ** ***** * * **** * ** ** {
**** * * * * ** ** * * * ** ** *** ** * **** ***
** ****** ** * * * * * *** * * * ** ** *** *
* * * * * * ** * * ** ** **** ** * * * *** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** ** = %.2f\nx2 = * ****** a, b, c, x1, x2);
****** ******* *** ** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * * *
* **** *** ** ** **
#include *** **** * *

int main()
{
*** * * **** ** * ** * **
* * *** * * ** * * ***** ** * %f * * ** ** **** * * ** * * ***
** ** * ** * * * * ****
* * * *** ** *** *** * *
*** * ** * ** * * ** * * * ***
*** * * * ** ** *
* * * * **** *** * * ** ** * ** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ***** ** = %.2f\nx2 = * * * * *
* * * * **** ** * ** * if(D==0)
* ** **** *** * **** *** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** * **
* * * * * * **** ***** * * ****
*** * *** * * ** * * * **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * ** = * = ** * **** * * * * * ***** * ** ***** *
* * * * * ** * ** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** * *** ***
* **** * ** ** **
* *** ** * * ** *

int main()
{
* ****** * * * ***** * * ** ***
* * * ***** * ** * * * * * * %f * * *** * * **** *
* ** * ***** * * *** * *
** ** *** **** **** * *** **
*** *** * * ** ** ** * ****** * **
** ******** * * ******** **
*** **** * * ** * * * * * * * * **** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** = %.2f\nx2 = * * *** * * **
*** * * ** * * * *** **
* ** * ** * *** * * * *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * ** * *
** *** ** ** ** * * ** ***
***** *** ******* ** * * * * ** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * ** = %.2f + ** * = %.2f - * ** **** ***** * **** * * **** ****
** * ** ** * *** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * **** * * * * ** a,b,c,x1,x2,D;
*** ** ** * * ** * ** * * * * * * *** %f ***** * **** ** * * *
***** * ** ** * * *** * *
* * * ***** * * * = (-b + sqrt(D))/(2*a);
* * * * ** * * ** * * **** = (-b - sqrt(D))/(2*a);
****** ** * ** * * * ** * *** **
* *** * * * * *** * * ** * * * **** *
** ** ** *** ** ** * * ***** ** **** * **** * ** * * * * * ****** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** * * ** * * * * **** * * **** *** * * ** * * * ** * ** ** * = %.2f\n",x1);
* ***** *** * * ** * * * * * * ****** ** ** ** *** * ** **** = %.2f",x2);
*** * * *** * *** * * * ** * * * * ** * * *
* * **** *** *** ***** ** if(D==0)
* **** * *** ** * * ** * * * ***** *
*** *** ** * ** * *** **** * * * * * ***** *** * ** **** ** *** ***** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
*** * ** * * ** *** * * * ** * * ** *** * ** ** * *** * *** * * * *** * = x2 = %.2f",x1);
* * *** **** * ** * ********* ** * * **
** *** ** * * *** * **
** * **** ** * *** *** **** *** *** * * * ** * ** *
* * ** ****** * * *** ** **** * *** * **** * ******** * * * *** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** * ***** ** * * ** * *** * * * * * * **** *** * ** = * * * ** * ******** ***** **
* ** * ** * * * *** * * ** * * ** *** *** ***** *** **** ******* * * = **** * ** * * * ****** *
* *** *** *** * * * * ** *** ** * * ***** *
* ** ****** *** * * * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* ** * * *** ** ** a,b,c,x1,x2,D;
*** ***** * ** * *** * ** %f ***** ***** * ****** **
**** * ** *** ** * * ****
**** * *** *** ** * *** = (-b + sqrt(D))/(2*a);
** ** *** *** *** * ** * * = (-b - sqrt(D))/(2*a);
* ***** ** * ** ** **
** ** ** ** * ****** ** *** *** * * * ** **
* * * *** ** ** * * * * ** **** * * ***** ** *** *** ** * ** * * * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* *** *** * ** ***** ** ** ** * * *** **** **** **** ** ************ * * * * *** ** = %.2f\n",x1);
* ** *** * * * * **** * ** * * ** **** *** * ****** * * * ** * ** * = %.2f",x2);
* ** ** ** *** * *** * ***** * * * ** **
* ** *** ** *** * * * if(D==0)
* ** **** **** *** * ** * * * **** * *
* * * * ** * ** * ***** * * * * * * * * * ** ** * ***** * ** * ** ***** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* * ** ** * * ***** ** ** ** *** *** * * *** * *** * ****** * ** ** *** * = x2 = %.2f",x1);
* * * ** ** ** ** ****** ** * * ***** * * ** **
** * ** ** *** * ** *
**** ******* * **** ** * **** **** ** * *
* * * ******* **** *** **** * ** *** * * * * * * * * * ** * * *** ***** * * **** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
** * ** * * **** ** **** ** * * * **** ** * * * ** * ** * *** ** *** ** * * = *** ** ****** **** * **
* * * ** *** *** ** * * ** * **** ** * * * ** * * *** ** *** * = ** * * ** * * **
* ** * * * ** * * * * *** * * *
* *** *** ** ** * * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** * ** *** ***
****** * *
int main()
{
* * * * * ** ** **** *** *** a,b,c,D = 0,x1 = 0,x2 = 0;
** * ** * **** ** * **** * * * * ** *** *** * *** * **** **

** **** ** *** * * * *** * *** ** of %.2fx^2 + %.2fx +%.2f = 0 * *** * *
*** *** * ** ** ***** ** = (b*b-4*a*c);
* * * * * ** * ** * * * (D < 0)
***** * **** * *** ** *
* * ** *** *** * ** * ** complex and * *** * **
** * * *** ** *** *** *** * ** = * * * * ****** ** ***
*** ** ** ***** ** ** * * ***** = *** *** **** ** * *
* ***** * ** *** * ** *** **
** * * ** ** ** (D > 0)
*** ** * * * ** * ** *
****** ** * ** * * real and ** * **
* * ** * ** * ******* ** = * * ** *** + sqrt(D))/(2*a));
*** * ***** ** * ** * * * **** * = %.2f",(-b - sqrt(D))/(2*a));
** * ** * * * * * ** * **
***** ***** * ** ***** (D == 0)
** ** * ** **** ** **
*** **** ** *** * * * * * ** * real and same\n");
*** ** *** * ** **** * ** * *** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** *** * * *** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
*** * *****
* * * * ** ** *
int main()
{
**** * ** * *** * *** a,b,c,D = 0,x1 = 0,x2 = 0;
**** ****** ********** * * * * * ** **** **** * **** * ***

** *** * ** * *** * *** * * * * * of %.2fx^2 + %.2fx +%.2f = 0 * * * * ***
***** ** * ** *** = (b*b-4*a*c);
* *** ** *** * *** *** (D < 0)
** *** * * * ** *** *
* * ** * * * * ** * ** * * complex and * ** ** * *
* ** * ** *** * * * * * * = * *** ***** **** * *
** *** ** *** **** * * * ** = * *** ****** * * ** **** * ** *
* * * ***** * * *
*** ** * ******** ****** ** (D > 0)
* ** * * * * * * *
** * * **** *** * * * * real and * * * ***
** *** ** *** * * * ***** * **** = * * ** + sqrt(D))/(2*a));
*** ** * *** *** * ** * * * = %.2f",(-b - sqrt(D))/(2*a));
* * * ** * *** ** *** *
*** * * * * *** * (D == 0)
*** * * * * * ** **
* * ** * ** *** **** * * real and same\n");
** * * *** *** **** *** * ******* ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ******** * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* **** ** ** * ** ***
*** ** * *** *
int main()
{
* * * * * * * ** *** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * ** * *** * * **** *** * * ** * * ** * *** ** * **

* * * ** * * ** **** * * * of %.2fx^2 + %.2fx +%.2f = 0 * *** * **
***** ** *** *** * ***** * = (b*b-4*a*c);
* * ** * * *** * *** ** * * (D < 0)
**** * ** * *** ** *
**** ******* * * * ** ** * * ** complex and *** * *
* * ** * ** ** * ***** ** * * * = *** * * * * *** * * ** ** * *
*** *** *** * ** * **** * *** * * = * * *** * * ** ** *
**** * * * ***** * *
* ** *** ** * **** * (D > 0)
* * * *** * ****** ** *
* * **** * * ** ********* * real and * * * * *
* *** ** ** *** * *** ** *** * * = * * * ** * + sqrt(D))/(2*a));
** ** * *** * * *** *** * ** ** * * ** * = %.2f",(-b - sqrt(D))/(2*a));
***** ** ** *** ** * *
*** **** * *** * ****** (D == 0)
** * ** * * *
***** * * ** * * * * ** real and same\r\n");
** ** * * * * ** ** *** **** = x2 = %.2f",(-b + sqrt(D))/(2*a));
***** *** ******* *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** * * * * * * *
* * ** **** ** **
int main()
{
******* * * * ** *** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
*** ** **** *** ** **** * ** ** ** ** * *

* ** * * * * * **** * *** * * *** of %.2fx^2 + %.2fx +%.2f = 0 * * ** *** *
*** ** ** * * ** * *** = (b*b-4*a*c);
***** * ** * * ***** * * *** (D < 0)
* ** ** * * * ** **
* **** ** * * * * * *** * * complex and * ** * **** * * *
* ** * * ** ** * ** ** *** *** *** = **** ********* ******* * * ** *
* * * ** * ** * * ** * * * **** = *** ** * ** * *** ** * *
* *** * **
** **** *** ** *** * * * **** (D > 0)
**** **** *** * ****
*** * * ** *** *** *** * * * * ** real and * ******* **** *
* **** * * * **** * * * ** ** = ** *** * + sqrt(D))/(2*a));
* ****** * ** * ** * **** *** = %.2f",(-b - sqrt(D))/(2*a));
* **** ** *** ** **
*** *** * * * ** ** * (D == 0)
*** * * * * * *
** *** ** ** *** * ** * * * * real and same\r\n");
* * * ****** * *** **** * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ** ** ***** * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** * * * *
* ***** ** * *
int main()
{
* * ** * ** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
* * * * * * * * * ** * * * ****** ***** ** ** * * **

** ** ** ** ** * * **** * **** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** * * *** * ****** = (b*b-4*a*c);
** * * ** **** * *** * ** * = (-b + sqrt(D))/(2*a);
* ** * **** ** * ** *** ** ** = (-b - sqrt(D))/(2*a);
** ****** *** **** * (D < 0)
* ***** ** *** ** * *** ** *
** **** *** * * * ** * complex and *** *** *
** * ** ** ****** **** *** * * * = * *** * *** ******* * **
** * **** *** * *** * * *** ** * = ** * * * * * ****
* * * * * * * * * ** * *
** ** ** ** ** * *** * * *** (D > 0)
**** * **** ***** *
* **** ** *** ** *** ** * * real and * * * * *** *
* *** * * ** * *** ** *** * ** = * ** * * ** *
*** *** *** ** * * * ** = %.2f",x2);
***** *** ********* * * *
*** * * ** ***** * ** (D == 0)
* * * ** * * * * **
** * **** ** * **** * *** *** *** real and same\r\n");
* *** * *** * *** ** * ** = x2 = %.2f",x1);
* * * ** *** *** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.214.204
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users