0 like 1 dislike
9.1k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 9.1k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
*** * * * **
**** ***** *** **

int main() {
* ** * ** * * *** * ** ** * **
** * ** * * * *** * *** *** * * * %f * ** ** &a, &b, ***
** *** * * ******** *** *
*** *** ** ** * * ** **** {
* * ** * * *** ** * **** * * * * ** **** * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** ** * * = *** * ** = * *** * * * a, b, c, (-b)/(2*a), **** * (-b)/(2*a), ** * *
*** * * *** **
*** *** * *** **** * if(d==0) {
** ** *** **** * **** **** * *** * **** ** * * **** ***
*** * * ** *** * *** *** * * ** *** * * *** * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** *** * a, b, c, x1);
* *** ** * ***** * *
* *** * * * ****** * * *** ** *** {
*** ** * * * ** * **** ** * ** * ** *** ** ******* *** *
* ** * ** **** * * * * * * **** * ** ** ** * **
* ******** ** **** * * ***** *** *** * * **** ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * * *** = %.2f\nx2 = ** * a, b, c, x1, x2);
* ** **** ** ** * ** * * *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ** *** **
* *** **** **** ** * ***
#include ** **** *

int main()
{
** **** ** ** * ** * **** ** **
*** * ** * * ***** * *** * *** %f ** * * ** * ** *** **
* * * * * *** ** *** **** **** *
** ** ** * * ***** *** * *
* * * *** * ** * * *
* ** * * * ** ** ***
* * *** * * ** * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and * ** * = %.2f\nx2 = * **** ** * **
** * * ** * * ** * if(D==0)
* ** ** * ** * ** * *** * *** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * *** ** * *
* * * *** * * * ** *
**** * * ** * ** ** * ****** * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** * * * = * *** = * * ** ** ** ** *** ** ** * ** ** * *** *
* * ** ** ** * ** * * * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * ** *** *
* * **** ****
* * * ** * *

int main()
{
** * * * ** *** ** ** * *** *
* * ** ** * ****** * ** %f * * ** * *** * * *
*** ****** *** *** * * *
*** * * * * ****** * * * * ** *
* ****** * *** *** * **** * **
***** ** * * *** *** ** **** *
* ** * *** ** * ** * ** * ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** = %.2f\nx2 = ** * * * *
**** * * * * * *****
** ** * * * ** *** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * *** ** * * * *
** * ****** ******* * *
* * ** * *** ****** * * * * **** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = %.2f + * *** = %.2f - ***** * * *** **** * ** * ** * ** * **
*** * ** * * * * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** * * ********* ** * a,b,c,x1,x2,D;
** * *** ****** * * * *** * *** ** %f *** * *** * *** *** * ****
* * ** ** * * **** ** * *
*** * **** * ******* * = (-b + sqrt(D))/(2*a);
**** * * * * ** * *** ** = (-b - sqrt(D))/(2*a);
* * * ****** ** * * *** ***
**** * * * * * ** * ** ** * * * ** * * ** *
*** * * * *** *** * ***** * ** *** **** * *** ******* ** * * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** * * *** ** * * * ** * ****** **** **** ** * * **** * ** *** ******** = %.2f\n",x1);
** * **** ** * ** ** * * * *** * * ** ** *** * * ** * ** ** ** * = %.2f",x2);
*** ** ** **** *** * ** ****** **** *** * * *
* *** ** * * ** * * ***** * ** if(D==0)
****** * ** * * ** * * * **** ****** **** *
* ** **** ** ** ****** *** * * * * **** ******** *** ** * * **** **** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* *** * ** ** *** ** * *** * ***** ** * **** ** ** * ** * * * * ** ***** * ** * * = x2 = %.2f",x1);
* * * ** * * * ** * ** *** * * * * * * * *
** ** ** **** * *
** * * *** ** * * *** * * ** * * *
* ** ** **** * ** *** * **** * * ** * *** * *** ** * * * ** *** * ** *** ** * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* ** * * ** *** * *** ** ** *** ** ** *** * ** * * * * ** ** * * *** ** = * * * * * * *
** *** *** * * * ** ** ** *** *** ** * ** * ** *** ** * ***** * = * * ** * * *** * **
* * * * * * * * * *** * ** * * * ** *
* * *** * *** **** **** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * * * * * a,b,c,x1,x2,D;
* * * * * *** **** ** * ** %f * ** * * * ** * * * *****
* ** ***** * * * *** *
** ** * * * * * * = (-b + sqrt(D))/(2*a);
*** ** ** * ** ** ** *** = (-b - sqrt(D))/(2*a);
** * ** * *** ** ***** *
*** ** * ** * * * * ** *** ** ** * ***
** * * ** * * *** *** * ** ** ** * **** * *** * ** ** * * *** * *** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
** * *** * ** ** ** * ***** ** * * ** **** * ** * **** ** ** *** * ** * = %.2f\n",x1);
* ** * * **** *** * **** * * **** * *** ***** * *** ** ** *** **** ** * ** = %.2f",x2);
** * * * * ** * * * *** ** * * ** * ** * *** **** *
* * * ***** ***** * if(D==0)
*** * ** ** * * ** * *** ***** * ** ** * *****
** ** ** ****** ** ** * * * * ** * * * * * ** ** ** ** ** * ***** ** ***** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
***** ** ** * ** * *** ** * * * *** ** ***** *** * ** *** **** *** ***** * = x2 = %.2f",x1);
* * * * ***** ** * ****** * *** * ** ***** *
** * *** *** ** * * *
* * * * * ** * * * * * ** * **** * *** ***** *
* ** **** * * * * * * *** * ** * * * * * * *** *** ** * * * * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
*** *** * ** * *** ** ***** * ** * * **** * * ** * **** ** * ** ***** * = ** * ** *** *** ** * *
** *** * *** * *** * * ** * **** ** ****** ** ** * * * ** **** * * * * ** = * *** * ** *** * * ***
** *** * * ** * * *** *** * ** * *** **
*** * * * ** * * * * ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
**** **** **** * ***
* * ** *** ** **
int main()
{
**** *** ** * * ** ***** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
*** ** * * ***** ** *** ** ****** ** ** ** * ** *** * ***** *

* ** **** ** *** ** * of %.2fx^2 + %.2fx +%.2f = 0 * * ** **
** * * * **** *** * ****** ** = (b*b-4*a*c);
** *** *** * * * (D < 0)
* * * ** * *** *** * *
* *** * * * ** *** * * ** * * complex and * ** * ** * ***
* * * * * * * ** * * ***** = * *** *** *** ** *** ***
* *** * * * * * ** = * *** * * *** *** *
* *** * * ****** * *
* ****** * *** ****** ** (D > 0)
* ******* * * ** * *
** * ** **** ** *** ** * ** * real and ** * ** *** * *
*** *** *** * ** * *** = * * * ** + sqrt(D))/(2*a));
* ***** * ** *** **** * ** ** * ** = %.2f",(-b - sqrt(D))/(2*a));
* *** *** * * ** * *
* * * * * ** ** ** (D == 0)
** ** ***** * ** *
** * * ** * * * *** * ***** ** real and same\n");
**** * ** * ** ****** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ***** * * ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
** * * * * *
*** ** * ** * ***
int main()
{
* ** * ** *** * ** * * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * **** * * * ** *** * ***** * *** * *** * *** ** * ** ** *

* *** * *** * ** * ** * ** of %.2fx^2 + %.2fx +%.2f = 0 * ******** **
***** * ** * ***** ** = (b*b-4*a*c);
* * ***** * ** * ** (D < 0)
* * * **** * * ** **
* * * ** ** * *** * * *** * * complex and ******* *
** * * ** ** *** * ***** * ** * = *********** ** * * ** * *
* ** * * * * * * * **** * * * *** = * * ** ** ** * * * **
*** * ** * * * * *
** ** *** * ** ** (D > 0)
** * * ** * ** *
* * ** ** ** *** * * ** ** real and ** ** * * *
** ** ** * ** ** ** * ** ***** * *** ** = * **** **** + sqrt(D))/(2*a));
*** * *** * **** ** ** * *** = %.2f",(-b - sqrt(D))/(2*a));
** ** * ** ** * * * *
* ** *** * * * * * (D == 0)
* * * *** **
* * * **** ** *** * * * ****** * ** real and same\n");
** ** *** * **** *** *** * * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** * * * * **** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** *** ** **
*** * * * *** * *** **
int main()
{
* ** ** * * * ** ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * ******* * * ** ** * ** *** ** * ** *** *** *** * ******

* * ***** ** * ** * * * ** ** * of %.2fx^2 + %.2fx +%.2f = 0 * * ***
** *** *** * ** = (b*b-4*a*c);
** ****** ***** * * ***** (D < 0)
* * **** * ** *
* * **** ***** * **** *** * ** complex and * * * * * *
* * * ** * * * * * ***** * = * ***** * * *** * * * **
* * * * * *** **** * * *** * = * * ** * ** * *
*** * * ** * * ** **** *****
* **** * ** ** * * ** *** ** * (D > 0)
* * ** * * * * **** *
** * *** * * ** ***** * ** real and **** ** *
* * * * **** ** *** * ** * = *** * ** ** + sqrt(D))/(2*a));
* ** * * * *** * * *** * * * *** * ** = %.2f",(-b - sqrt(D))/(2*a));
* * ** * * * * * ** *
** *** * *** * *** * * (D == 0)
* *** ** * * * ****
** * ***** *** * *** * real and same\r\n");
** ** * *** * * ** ***** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * *** ******* * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
******* * ***
* ** * ** * ** *
int main()
{
* **** * * ** ** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
** ***** ** * * ** * *** * ****** * * ** * ******** * * * * ** *

* * * *** ********* *** * * * ** of %.2fx^2 + %.2fx +%.2f = 0 *** * *****
****** ***** * * * *** = (b*b-4*a*c);
* * * * * ** ** (D < 0)
*** *** * ** ** ** ** * ** **
** * **** *** * **** * **** ** complex and * *** *
**** *** * *** ***** ****** * = **** ** ** * **
** ** ** * * ** * ** ***** * = * * * * *** ** ** *
******* ** ** * ** * ** * *
*** * * ****** ** ** (D > 0)
* * * * * ** * * *
*** **** * * * ***** ** * * real and ** * ** ***
*** * ** *** * * ** ** ** * = *** *** *** + sqrt(D))/(2*a));
* **** * ** ** * * * *** ** = %.2f",(-b - sqrt(D))/(2*a));
** * * * * * * * * * ** **
* * * *** * * ** ** (D == 0)
* ** ** * * * *** **
* * * * **** * * * ** *** * * real and same\r\n");
** **** * **** * ** * * *** *** ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * *** ** * ** * ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ***
***** * ** ** **
int main()
{
* * * * ** ** * ** * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
** *** ** * * ** * ** * ***** * * * * * * ***** ***

* * * *** ** **** **** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
***** * *** *** ***** = (b*b-4*a*c);
* * * * * * * ** ** **** = (-b + sqrt(D))/(2*a);
* *** *** * * ** * = (-b - sqrt(D))/(2*a);
*** **** * ***** ** ** (D < 0)
** * *** * * *****
******** * ** * * ** *** * * * complex and * ** ** **
** * ** * ** * * * *** * * = ** * ******** ** *** * ** *
***** ** ** * * * *** * * *** = * * * * * ** *** * **
* * ***** * **** ** ** ***
** * ** ** * * * ** (D > 0)
* * * ** * ** * * *
*** * * **** * * * * *** ***** real and * *** ***
*** * ** * ******* ** * = *** **
***** * ** * * ** ***** ** = %.2f",x2);
* * * ** * * ** **** *
* * *** *** ** * * *** * * (D == 0)
* *** ** ** * * * ** ***** *
** * * * * ** **** ** * real and same\r\n");
** *** * * ** *** ***** * * = x2 = %.2f",x1);
* *** * ** ** *******
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.127.203
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users