0 like 1 dislike
11.9k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 11.9k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
**** * * * **
***** * ****** * *

int main() {
* * * *** * * ** * * **
*** ** ** ********* * ** ************ %f * * * &a, &b, ** ***
* ***** **** * * * *** ** *
** * ***** *** *** * {
* * * * *** *** ** **** * * * * * * * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * * = * * * = * * ***** a, b, c, (-b)/(2*a), * * (-b)/(2*a), *** ****** *
* *** * ** *** * **
*** ***** **** *** * ** if(d==0) {
**** *** * * * ** **** * * * **** ***** * ** ***
***** * *** ** ******* *** * * * * * * ****** * * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** a, b, c, x1);
* ** * *** *** ** * * *
*** * ** ******* ****** ** ** {
* * * * * * * **** * ** ** * * * * **** ** ** * ***
* ** ** * *** * *** * * **** * ** * * * ******* * * *
** ***** * * * * ** * * * * * * ** * *** * *** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * ***** = %.2f\nx2 = * ** ** * a, b, c, x1, x2);
*** ***** * ***********
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** ** * ** *
* * * * ** ****
#include * * * ******

int main()
{
* * ***** ** ********* ** ** * * * *
** * *** ** *** **** * ** * * * %f * * ** * * * *** * * * ***
*** * ** * ** * * ** * * *
*** ** * **** *** * * ** * * *
* * ** * **** *** * **
* * * * ** **** ** ** * ** ** * **
** ** *** * ** * ** ***** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** *** ** = %.2f\nx2 = *** * **** ****** * **
* ** * * ** ** ** *** if(D==0)
* * ** * * * ** ****** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * ** ** **** *
*** ** * * ** * *
* * ** ********* * ** * ** ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * ** = * ** = * * ** * * * * **** * * *** ** ** **** **
* * ** * * * ** ** ********* 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *** **** ** *
** * * * ***
**** * ** * * *

int main()
{
* * * * ** *** *** ****** ** * *
* **** * * * * ********** * * %f * ** ** ** ** ** *** *
* * * ** ** ** *** * * * * * * **
* * ** ******* ******* **** * * * *
*** * ** * * ** * **** *** * * **
** * ** ** ****** * ****
* * * *** * ** **** *** *** *** ** of %.2fx^2 + %.2fx + %.2f = 0 are real and * **** * = %.2f\nx2 = * ******** ** ** *
** * * ** * ***** ***
*** **** ** ** **** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * *** ** *
** * * ******* ** * * *
*** * *** * * ** ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** ** ** = %.2f + *** = %.2f - * ** **** **** * * ** ** * **** * *
**** * * ** ** * ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* *** *** ** * * ***** * * * a,b,c,x1,x2,D;
** * * *** * * * * * * %f *** * * *** ** ** ** **
**** ** * * ** *** * ****
* *** ********* * ** **** = (-b + sqrt(D))/(2*a);
**** ** *** * **** * = (-b - sqrt(D))/(2*a);
** *** ******* *** * *
*** * ** * ** ******* * * ** * ** **
* * *** *** *** *** ** ** * ** * ****** **** *** * ** * ** ** ** * *** *** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
** * ** * * ** * * ** *** * * * * * * * * **** * ** **** = %.2f\n",x1);
** ** * * ** * * * * * * ** ** **** * * * ****** * ** * * * ** *** = %.2f",x2);
** * * * *** * ***** ** *** **** ** * * *
* * * * ** ** if(D==0)
*** ** *** * ** * *** * *** ** ** *** *** *****
***** ***** *** ** * ** ** * * ** * * ***** * * * * * ** *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * **** * **** *** * *** *** ** * * ***** * * * ** ** ** * * * * * * = x2 = %.2f",x1);
** ****** * ********* *** * * ** * ** ******* * * *
* **** * *** * * *
* *** ** ** * *** *** *** ** ****** * *
* **** * * ** * * ** * * ** * * ** * **** * * **** ** * * ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* * * * * *** ** * ******* ** **** * ** * * * * **** ** * ** = ***** ** ** * *** *** ** ** ** *
* ** * ******* * ** * * * * *** * * *** *** *** ** ** * ** * * = **** ** ** ** ** *** *
*** * * *** ** * *** ** ** *** * ** * **
** * * * ** ** * * * ** ** * *** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** * **** **** ** * ** * a,b,c,x1,x2,D;
**** * * * * **** * * %f **** * ** * * *** ** * * ***
** * * * ** ** * ***** *
* * ** * ** ** * *** * ** = (-b + sqrt(D))/(2*a);
* *** ** * ***** ** * * * * = (-b - sqrt(D))/(2*a);
** ***** ** * ** **** *
* *** **** *** *** ** * * ***** * * * ******
* * * ** * ** *** ** ** *** * *** *** * * ** * * ** *** * * ** ** ** * ** *** ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* * **** ** * *** ** * *** *** ** * ** * * ** ** *** * * ** ** * * * * * = %.2f\n",x1);
* * *** ** * * *** * ****** * **** * * *** * ** *** **** * * * ** ** = %.2f",x2);
** * **** ** ** *** * * ******* * **** ***
** ** * *** ** * ** ** if(D==0)
* ** *** ** * * ** * ** ** * *** ***
** ** **** ******** * ***** **** * *** ******* * * * * * *** ** ***** *** * ******* * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* ****** ** **** * ** * ** *** * * * *** *** * ** * * * * ** ***** = x2 = %.2f",x1);
* ** *** * * * *** * ***** * * ** * * ** **
* * * ** * *** * * ***
** ** * * * * * *** * ** *** ** *** * * * ** **
* * * * * ** * * * ****** ** ** * * ** ** * *** **** ** * * * ** *** * *** ** ** * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* ** ** **** * * * ** * *** *** * * **** * ** * ** * ** * * * ** **** *** * = * * * * * **** **********
** ** ** ** *** ******* * ** ** ** * **** * ** * * * * ******* * * = * * ** *** * ** *
* ***** ** * ***** *** ********* ***** * * * *
* *** * *** *** ** * 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* **** * ** * * * * *
* * * * * **
int main()
{
* ** ** * * * * *** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
***** * ** ** ***** * * *** * *** * * * **** * *** * ** ***

* ** * * * * * **** * * * * of %.2fx^2 + %.2fx +%.2f = 0 * *** ****
* *** * ******** *** ** = (b*b-4*a*c);
*** * * * * ***** (D < 0)
* *** ** * * * *
* *** ** *** * * * * * * ** complex and ** ** **** *
* ** ** * * ** ** *** ** * = *** *** * * ** * * *
* * **** ** ****** * * ** * = ** ** ***** ** *
**** * ***** * * ***
***** ***** ** ****** * *** (D > 0)
** * ***** *** *
* *** ** ** * * * **** **** real and * * * ** ***
* ** ****** *** *** *** ***** = * * **** * + sqrt(D))/(2*a));
* ** * ** *** *** * ** * * * ** = %.2f",(-b - sqrt(D))/(2*a));
* * * ** ** *
** * ** * * ** *** *** * (D == 0)
* ******** ** ***** *
** * ******* * * ** ** * *** real and same\n");
*** * * * ** * ** ** * ** ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** ** *** *** ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
*** *** * * **
* * * *** *** * *
int main()
{
* * **** * ** * * *** *** * a,b,c,D = 0,x1 = 0,x2 = 0;
* * ***** * ** * **** ******* ** ****** * * * ** * ** *

** ***** *** * ** * * *** * **** of %.2fx^2 + %.2fx +%.2f = 0 * ** ***** * *
** * *** ** * * * ** * * = (b*b-4*a*c);
** * ** ** ** ** * ** * (D < 0)
**** * *** * * ** **
* * ************ * ** *** complex and * * * **
*** * *** * * *** ** = *** ** * ************** *****
** ** * *** * ** ** * *** * * = *** * *** * ***** * * *
* ** * ** *** * *
** * * ** ** * *** ** (D > 0)
*** * * * * * * * ** *
* * *** * *** ** * ** * real and * ** * *
** ** * ** *** *** ** * ** *** * = *** * ** * + sqrt(D))/(2*a));
* * * ** ** * * * ** ** *** * * * * = %.2f",(-b - sqrt(D))/(2*a));
* ** *** * * *** * *****
* **** ** ***** * ** (D == 0)
*** * **** ** *** ** *
* **** ** * **** * ** * real and same\n");
** ** ** **** * ** *** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * * * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
*** * * ** * **** *
**** * * **
int main()
{
* * ** ****** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
** * *** ** **** * ** * *** ** ******** * **** *** * * *

* * *** * *** * * * ****** * * of %.2fx^2 + %.2fx +%.2f = 0 *** *** **
* * ** *** * *** * ** * = (b*b-4*a*c);
* ** * * * * **** ** * * (D < 0)
*** * ** ** ** * *** *** **
** *** ***** * *** ** * ***** * complex and * * * *
** ** *** ** * * * * ** * ** ** * = * * ** ** * * * ** ** **
*** * ** *** *** **** *** ** = ***** ** * ** * * **
* *** * * ** * *** * *
* *** **** ***** ** (D > 0)
** ******* * * * * *** ***
* * ** * *** ** ** * real and *** ** ** *
* ** *** * * *** ** *** ** **** ** * = * *** * * + sqrt(D))/(2*a));
* ** * * * * ******** *** = %.2f",(-b - sqrt(D))/(2*a));
* * ****** * * * * * ** **
*** *** * ** * * * ** *** ** (D == 0)
*** * * *** *** *** *
* * **** * * * ** *** * * * * ** ** * real and same\r\n");
* ****** * ** * *** * ** *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** *** *** * * ** ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** ** *
** * ***** * *
int main()
{
* ** ** * * **** ** a,b,c,D = 0,x1 = 0,x2 = 0;
* ** * * * * *** * * * ****** ** * ** * * * * ** * *** *

*** ** ******** * * *** ** of %.2fx^2 + %.2fx +%.2f = 0 * ** *** **
** * *** * ***** * = (b*b-4*a*c);
** * **** ** ** **** (D < 0)
*** * * ** * * **
* *** ** *** *** * *** * ** complex and *** * * *
** * ** * ** * *** * * * *** * * *** = * ** ** ************
** * * * ** *** * ***** * = * * * ** * * * *
* * * *
*** **** ** * ** * ** (D > 0)
* * * ** ** *** **
*** * * * *** * *** * ***** *** real and * ** ** ****
* ** ** **** **** **** * *** = * ** ****** + sqrt(D))/(2*a));
* ** * * ** ** * * * * = %.2f",(-b - sqrt(D))/(2*a));
** **** * *** ** ***** **
****** *** * ***** (D == 0)
* ***** * * *** * * *
** * ***** * ** ** ** real and same\r\n");
* * ** *** ******* ** **** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ** * * *
** ** * **** * ** **
int main()
{
* ** * * ** * * * * a,b,c,D = 0,x1 = 0,x2 = 0;
** **** ** ** *** ** *** * * * **** *** * * ** ** ****

* ** * ** *** ** * * *** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** ** *** * ** *** = (b*b-4*a*c);
* * * * * ** ** * ** * * = (-b + sqrt(D))/(2*a);
* ** * *** *** * *** ** = (-b - sqrt(D))/(2*a);
* * ***** * *** **** * (D < 0)
*** * ** * * ** * * *
* * * *** * **** ** * ** * * ** *** complex and * *** ** **** *
** * * * * * ** * * ** ***** = * ** * * * * * * **
** * * * * * ** ** * ** ***** * ** = ** * * ** ** ** * * *
* * *** * * * * *** * *
* * * ** ** * * * * (D > 0)
** * * * *** * * * *
*** ** ** * * * * *** *** * ** * * real and ****** ** *
*** * ** ** *** ** ** * * = * *** * *
** * * * ** ** *** * **** = %.2f",x2);
* ***** **** * **** *
******* * * *** ** * * * (D == 0)
*** ** * * * * ** ** ***
* *** * * ** ** * * * * *** * * real and same\r\n");
* ** *** * **** ** * * * ***** = x2 = %.2f",x1);
* ***** **** * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.130.52
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users