0 like 1 dislike
7.9k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 7.9k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
*** * * *
* * * ** ** * ***

int main() {
** * * ** ** * * * * *
** ** ** *** * ** * * ** * %f ** &a, &b, ********
*** * * * ** ** * *** * * **
* * ** * ** * ** * ** {
* * * * * *** ** ***** **** **** **** ***** ** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** * = * * * = * ** ****** *** * a, b, c, (-b)/(2*a), * *** (-b)/(2*a), ** * **
***** * ** **** ** *** *
** ** * *** if(d==0) {
** *** ** **** *** * * * ** * ***** * ********** *** * * ***
**** ** ** *** * *** * *** ***** ** * * * * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** ** a, b, c, x1);
* **** ** * ** ***
** * *** ****** *** ****** {
* ** ** *** * * ** ** * * *** **** * ** *** * *
** *** ** * * ** * * * ** *** * * * ***** * * ** **** *
* ** * * ** ***** * ** ** * * * ** ** *** * ** * * *** ** ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * *** * = %.2f\nx2 = * **** a, b, c, x1, x2);
** * * * * ****** ** *
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * * * ** *** *
** * * * * ** * ** *
#include ***** ** ***

int main()
{
****** * ** * ** * *** * ***********
* *** **** *** ** *** ** %f **** * * ** * * ** * * * ***
** *** * ** *** ** * * ** * *
* * ** ** * ***** * *** ** * *
* ** * * *** * * * ** **
* * ** * *** *** *** * * * **
* * ** *** * * * **** **** * of %.2fx^2 + %.2fx + %.2f = 0 are real and ****** = %.2f\nx2 = * ***** * ** *****
* * ** * *** * ** * if(D==0)
* *** *** * *** ** * ** * * ***** ** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * * * * * *
* **** ** ***** * * * *
** * ** **** *** * * **** ** *** ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * = * * ** = * ** * * ** * *** *** * *** * * ** * *
* ** * * ** ** ***** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** * * **
* * * * * * *
* * **** ** * *

int main()
{
* * ** ** * ** * * *** ****
* * * ** * * * *** **** ** * %f ** * * * * * *
* * * ***** * * ***** * *** **** **
* * * ******** *** * * * * **
*** ** * ** * ** *
* ** ** * * * ** * **
* ** ** **** * *** * * * ** ** *** *** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** *** * = %.2f\nx2 = * * ** ***** *
*** **** ** * * *** * *
* **** *** * * * ** * * * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** ** * *
* ** * * *** ** **
** * *** * * * ****** ***** ****** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ***** = %.2f + *** *** = %.2f - **** **** ** *** * * **** * ** **
***** ** * ** **** * * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** ** * ** * * ** ** ** a,b,c,x1,x2,D;
* * ** ** * * * * * * * * ** *** **** %f * * ** **** *** * * ****
* * * * * * * * ** ***
***** * * **** * * = (-b + sqrt(D))/(2*a);
* * *** * ****** * * = (-b - sqrt(D))/(2*a);
* * * * * * ** * * * **
** ** ***** * * * **** **** *** ** ** *
* ** * * ** * * ** ** * * *** * * **** ** *** * * ** ** **** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* **** * * ** * ** *** * * *** * * * * ** ** *** ** ** ** * * * * = %.2f\n",x1);
* * * * ** * * *** *** ** * * *** ** ** * * ** ** * *** * ** ** * = %.2f",x2);
* * *** **** * ** * * * * ** ** ** * *** ***
*** * ** *** * ***** ** ** ** * if(D==0)
* * *** ** ******* ******** * * *** ****
* ** * * * ** * ** * *** * ** ***** **** * * *** * * * ** * * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* *** * * ** **** ** ** * * * ** ** * **** ***** * *** * *** ****** * ** = x2 = %.2f",x1);
** * * * * ** * **** * *** ** * * ** * ** **
* ** **** * * ** * ***** ** *
**** * * ** *** ** * *** **** * * * ***
*** * *** ** ** * * ** *** ** * * *** * * * * ** * ** **** * * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
*** * * * ** * ** * ****** ** *** * * ** ******* ** ** ** * ** * ** * * = *** ** ** **** ***** *******
** ** * * * * ** * **** **** ** * * * * *** * ****** ** ***** **** * *** * * = **** ** *** ******* *
** * * * ** *** * * * * * * **** * **
** ** *** * ** * ****** ** * * * 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * *** ******* a,b,c,x1,x2,D;
***** * * * ** * * ** ** ** ** * * *** %f * * * * ** ** *** ** * *** ***
* ** *** * * * ** * ** **
** * * * **** * * = (-b + sqrt(D))/(2*a);
* * ******* ** ** ****** = (-b - sqrt(D))/(2*a);
* ** ** ** ** *** * * *
***** * * ** * ** **** ** * ****** * ** **** *
* * ** ** ** * * * * * ** ** * **** ** *** ** * * * ***** ******** ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
** ** * * * * *** * ** **** ** * ** * *** ** * ****** * * ***** * = %.2f\n",x1);
* * ** * * ** *** * * * ** ********** *** ** * * ** ** * ** * ** ** ** = %.2f",x2);
* ** ** * ** * * ** * ** ** * * ** * **
* * * * ** **** * if(D==0)
** * **** * * ** *** ** * * **** * * *
* * ** ** **** * * **** * *** * ** ** ******* ** * ** ** * * **** * * ****** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
** **** * *** ** *** ** *** * * ** * * **** * ** * *** *** ** *** * * ** * * ** = x2 = %.2f",x1);
****** ** * ** * ***** * * ** ***
** **** ** * **
******* ** * * * *** ** * * * *
****** * ** ** ** ***** * *** *** * * ***** ** * ** ** ** * ** *** ** * ** **** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * * ** * ** *********** * * ** * **** * * **** ** *** *** **** ****** * ** ** * = *** ** *** * *****
* **** * *** * * **** * * **** *** ** * ** * ** *** **** ** * * * * **** * = * * *** * * *** ****
** * * **** * * * * *** * *** * ** * * *** **
* ** ** *** ** ****** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
******* *** * **
** * * ****
int main()
{
* * * * * * **** * a,b,c,D = 0,x1 = 0,x2 = 0;
* *** ** * * ** * **** * * * ***** **** * ** * * * ** **** **

** * **** ****** * * * * *** **** of %.2fx^2 + %.2fx +%.2f = 0 * *** *
* * * * ** ** * ** * = (b*b-4*a*c);
** **** * ** * *** ** (D < 0)
**** * * ** *
* * * * *** ** ** * * ****** complex and * ** *** *
** ** * * * *** * ** * * *** ** = * * ** * **** *** ** *
* **** * ** *** *** ***** *** ** ** = ** * * * ** **
* ** * * ** * ** * ** **
**** **** * ** * *** **** * (D > 0)
*** *** * * * * **
** * * ***** * *** * * real and ** ** * * **
* * ***** *** ** ** ** *** *** * = * * * + sqrt(D))/(2*a));
** *** *** * *** * * *** * * = %.2f",(-b - sqrt(D))/(2*a));
* * * * * ** * * ** *
* ** * ******** *** (D == 0)
** * * ** *** * * * *
** * ** * * * **** * ** * * real and same\n");
**** * * ** *** * ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** * * * **** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* * *
* * * * ** * *
int main()
{
* *** **** *** ** * * a,b,c,D = 0,x1 = 0,x2 = 0;
***** ** * * **** *** ** ******* **** ** ** **** * * * *

* ** ***** * * **** * * * *** ** *** of %.2fx^2 + %.2fx +%.2f = 0 * * **
*** **** ** ** ** * = (b*b-4*a*c);
* ******* * * * *** (D < 0)
** * * *** ** *
* * * ** * *** * ** * * * * * ***** complex and * * * * **
* ** * * * ** * * * ** *** ** = * ** *** *** ** * * *
* * ******* ** ** ** ** ** * * * *** = ******* * * ** * ********* *
** * * **** * *
****** * ** * ** * * (D > 0)
** *** ** ******* *
**** *** *** * * * * * real and ** ** * * **
** * * * * ** ***** **** *** * * * ** * *** = * ***** * * + sqrt(D))/(2*a));
** * * *** * * ** * * * * * ** * * = %.2f",(-b - sqrt(D))/(2*a));
** * * * * * * ** * ****
* * *** ** * * * ** *** (D == 0)
* *** ***** ** ** *** *
** *** * ** *** * * * * * real and same\n");
* * * * * *** * *** * ** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* ** *** *** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * *** *
*** * ** * *****
int main()
{
*** * ***** ** * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
* * * * ***** * * * ** ***** ** **** * * **** **** ****

* **** * ****** **** * * * * * of %.2fx^2 + %.2fx +%.2f = 0 ** ****
* * ** * * * ** * * * * * = (b*b-4*a*c);
* **** ***** ** *** * (D < 0)
****** * *** **** **
* ** * * ***** ** * * *** ** *** complex and * *** * ***
* * *** **** * ** * *** * * * * * = *** * *** **** * **** ** ** * ***
** * ** *** ** ** * *** ***** * = ** * ** *** * *
** * * * * * ** * ****** *
* *** * ** *** ** ** (D > 0)
* ** ** **** * * **** **
**** *** ** * * * * * * ***** * * real and * ** * ****** **
* * ***** ** * ** ** * * * ** = * *** * *** + sqrt(D))/(2*a));
* * * **** * * * ** * ** * * * = %.2f",(-b - sqrt(D))/(2*a));
* *** * * * * ** *** * * **
** * * * ** * ** (D == 0)
***** * * * * * ** * * ** *
***** *** * ***** *** * ***** real and same\r\n");
* **** * * **** *** * *** *** * * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** **** ** * *** ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* * * * * *** *
*** * * * * ***
int main()
{
* *** * ** * **** a,b,c,D = 0,x1 = 0,x2 = 0;
* **** ***** * *** *** * **** * * * * *** ** ******

*** * ** ** * ** * * * **** *** * * * * of %.2fx^2 + %.2fx +%.2f = 0 * * ** *
* ** * * ** *** = (b*b-4*a*c);
* *** * ** ****** (D < 0)
* * **** * * * *
* * *** * * ******** ** *** complex and * ** ** *
*** * *** * ********* * * * = *** * * ****** * *** ** * *
* *** * ** * * * *** ** * = * * * *** * * *** ***
** ** * ***** *****
* *** * * * * ** * (D > 0)
* ** ** * * ** * ** *
** * * ****** *** * * ****** *** real and ***** *** **
* * ** * * * **** *** *** = * ***** * + sqrt(D))/(2*a));
*** **** ** ** ***** ** * * = %.2f",(-b - sqrt(D))/(2*a));
** ** ** * * *
** * ** * * * ******* * * (D == 0)
** * * *** ** ** * ** **
****** ******* ** ** * * real and same\r\n");
** *** **** * * *** *** * * * *** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** **** ** ** ******* *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** * * ** * * *
*** ** **** ***
int main()
{
**** * * * ** * * ** a,b,c,D = 0,x1 = 0,x2 = 0;
* * *** * * * ** ****** ***** * * ** *** * * * * **** ***

* * ** **** * * * * * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** ** *** **** *** * * = (b*b-4*a*c);
** * *** * ** *** * = (-b + sqrt(D))/(2*a);
*** ** *** *** * *** = (-b - sqrt(D))/(2*a);
* * * *** * *** (D < 0)
* *** **** * * *
* * ** **** * ** ** * * ** * * * * complex and * *****
* *** ** ** * ** *** ** * *** = * ** * ** ***** ** * ** *
* *** * ** **** * **** *** * ** = ***** ** ** ***
* ** *** ** ** * *
** * * * ****** *** ** * * (D > 0)
*** * * ** ** * **
** * * * * * * **** * * * real and * ** ** * **
* *** *** * * ** * ** * * * = * *** * ** *
* * ** ** **** ** * * * ***** **** = %.2f",x2);
* ** ** ***** * * * ***
* ***** * * * * ****** (D == 0)
** * * * * * **** *
****** * ** ** *** * * * ** **** ** * real and same\r\n");
* *** ** *** * * * *** * = x2 = %.2f",x1);
* * * ** * * * * ** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.178.131
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users