0 like 1 dislike
14k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 14k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* ***** ** ** *
*** * **

int main() {
*** **** * **** * *** *** **** * *******
***** ** ** **** ** * ** **** ** *** * %f * * * * &a, &b, * *
** * * ** ** ***** *** ***
** * * * * *** *** * *** ***** {
******** ***** * **** *** * ** * * **** ** * *** * ** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** ** = * * * * = ** *** * * a, b, c, (-b)/(2*a), * * * * (-b)/(2*a), **** * *
** * *** *** ** **
*** * * * * ** ** * * if(d==0) {
* * ** * * **** * * *** ** **** * ** * *** ***** * ** *
* * * *** * ***** ** ****** ** * **** * * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** * * a, b, c, x1);
* * * **** ***** **** *
* * *** *** *** ** * *** * ** * * * ** {
*** ** * * * ***** ** ** * * * *** **** * ** ** ***
* ** *** * * * * ** * * ** * * ***** * * * **
** ** * *** ** * * * *** **** * *** * * ******* * *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and *** * = %.2f\nx2 = * * a, b, c, x1, x2);
** **** * * * * ***
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * *** * **
** *** ** * *
#include * * * ***

int main()
{
*** * **** * * ** * * * * **
*** * * ** **** * * *** * *** * ** * * **** %f * * * *** * *** *
* * *** **** **** * * * * **
* ** * * * * * * **** * *
* *** **** * ** * * *** * ** ** * * *
**** ** ***** * ** * * * *** * *
*** ** * ** ** ** *** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and **** = %.2f\nx2 = ***** *** **
* * ** ** *** ** if(D==0)
*** ** * ** * * *** *** *** * *** * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = * ** ******
* ** ** ** * * * ** *
** ** **** ****** * * * ** ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** * ** = ****** = ** ** * * ** * *** * * * * * * * ***** *
* * * ** **** * ** * ** *** * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include *** *** * ****
* * *** ** * * *
* ****** *** ***

int main()
{
** * * * * ******* *** * ***
*** * * *** ******* * * ** ** *** ** %f * * * ***** * ** * ** *** *
***** * * ** * *** * *
* **** * * *** *** * *
* ** ** * ** * ** ** * *
** ** * * ** * * * ***
****** * * **** * * * *** of %.2fx^2 + %.2fx + %.2f = 0 are real and ** * * = %.2f\nx2 = ** * * * ** **
*** * * ** * * * * * ** * * *
* *** ** * ** *** ** ** ** *** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** ** *
* * * *** * ** * * **
* * *** * ************ * * * * * of %.2fx^2 + %.2fx + %.2f = 0 are complex and * *** **** = %.2f + * **** = %.2f - ** ** ***** ** * ** * ** * * *
* ****** ** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
*** ** ** ** ** * *** * a,b,c,x1,x2,D;
* *** ***** ** ***** * ** *** %f ******* * * ***** * ** **
* * ** * * *** ** **** ** *
* * * *** ** * *** * * = (-b + sqrt(D))/(2*a);
* * *** ** **** * = (-b - sqrt(D))/(2*a);
* **** * *** * *** *** *
** * *** ** *** ** ** * * *** * * * ** ** ****
* * * * * *** * * ** ** * ** ** *** * ** ** * ** ** * * ********* ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
* ** * ** * ** **** * * * ** * *** * *** ** * *** **** *** **** * ** * = %.2f\n",x1);
* ** ** * * * ** **** ** *** *** ** ****** * ***** * *** ***** ** ** ** **** ** * ** = %.2f",x2);
****** * * * ****** ** ** * * * * *** * *** * ***
** ** ***** * * * * ** if(D==0)
**** ****** **** * * *** * * * * * *** * * *
** * * ** * ** * * *** ** *** * **** ***** * *** * * * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
* * * ** **** ** ** ** * * *** * * ** ****** * *** * ****** = x2 = %.2f",x1);
** *** ***** * ** *** ** ** ** * * **
*** ****** * * ***
* **** * * ** ** *** ** ***
* ******** *** * * * * ** * * * * **** *** * ** * **** *** **** * ** **** of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
** * ** * * ****** ** * * * * ** ** **** * * * * * *** * * * * ** * * * * = *** * * ** ** *** *** ** *
** * * * * * * *** **** * ** * * * * ** *** ** ** **** ***** ** = * * * *** *** ** * *** *
** * * * *** * * * **** *** **** * *** * * ***
**** * * * * ** * * ** **** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* * * **** * * * *** * a,b,c,x1,x2,D;
* *** ** ****** *** * * ** ** *** * %f ** * * * * * * **
*** ** * * * *** ** * ** * *
** * * * * *** = (-b + sqrt(D))/(2*a);
*** * ** ** * * * ** * = (-b - sqrt(D))/(2*a);
* *** * * * * **** * ** * *
*** *** * *** * * ** ** * *** * ** * * * * *
*** *** **** * * * ** ** * * * * * * * * ******* * ***** ** *** **** * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
* * * *** * * * ***** * * * ** * *** ** **** * ** ***** ** *** * ** ** * * = %.2f\n",x1);
**** ** *** * * *** ***** * *** ** * *** ******* *** * ** * ** ***** ** * * * *** = %.2f",x2);
** * * * * * * * ** * *** * ** * * *
*** * * * * ** ** * * * if(D==0)
* * ** * * * * * * * * * * ****** **** ***
** * * * * ****** * * * * ** *** **** ** * *** ***** ** * ***** * ***** ** of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
* ** **** * * * *** * ** * * *** **** *** ***** * ** * ** * * = x2 = %.2f",x1);
* ** ** * ** * * ** ** ** ******** * * ** *
* * ** * ** ** *****
* * ** * **** ** * ** ** ** * ** ******* **
* ** *** ** ** * * ** * * ** * * ***** ** * ** *** ** * ****** * ** ** of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
***** * ** ** * ** * *** * * * * * * ** ****** * * ** * ** * = * ** * **** **** ** * **
*** * * ** * ** ***** * * * ** * * * ** * ** ** * ****** ** *** * * = * * * * *** * ** * *
* ** * ** * * ***** * ** *** * *** * * ****
*** ** * ** * * *** *** ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
* ** ** ** * * **
** ** * * *
int main()
{
* * * * **** ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
*** * * * ** * * ** ****** *** *** * ** * ** ** **

* ** * * * *** * * * * **** * * ** of %.2fx^2 + %.2fx +%.2f = 0 ** * *** *
** ** ** * * * * *** = (b*b-4*a*c);
* * ** ***** * * * ** (D < 0)
** ** * ********* * ** **
** * * ** ***** ** * * **** * * complex and * *** * *
* ** * **** ** *** * * ** ** = * * ** * * *** *** ***
* ** * * * * ** ** ** * * = * *** ** * * *** *** * * ***
****** * * * *
* ** ** ******** * (D > 0)
* * ** *** * * * * ***
* ** * * * ** * ***** real and * ** * * **
* * *** **** * *** ** * * * = * ** + sqrt(D))/(2*a));
* * ** * * ** **** * **** * * * * = %.2f",(-b - sqrt(D))/(2*a));
* * ** ** * **
* **** * * ****** * * ** (D == 0)
** *** * * * * * **
* * *** *** *** * * * * * ** real and same\n");
* ** * ******** * ** * *** ** * * = x2 = %.2f",(-b + sqrt(D))/(2*a));
**** * * ****** * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* **** * * *** *
* * ****** ** **
int main()
{
* ** * ** ** * * ** * a,b,c,D = 0,x1 = 0,x2 = 0;
***** ***** ***** * * * * ** ** * ** * * *** * * * **

** **** ** * ** ** * * * * ** * of %.2fx^2 + %.2fx +%.2f = 0 ** * * *
* ***** * * *** * = (b*b-4*a*c);
* * ****** * * * * (D < 0)
***** ** * * *
* * * * * ** * * *** * ** ** *** complex and * * * ***
** ***** **** * * * ****** * *** = * * * * ******** ** * * ***
*** *** **** **** * * * *** **** ** = ** ** ** ** * * * *** *
*** * * * * * * * *
* * ** ** * * *** *** (D > 0)
** * *** * * *
**** **** ** * * ** **** ** ** * real and ** ** * * *
* ****** ** *** ** *** **** * * = * * + sqrt(D))/(2*a));
** **** ** ** * * * * * ** * ** = %.2f",(-b - sqrt(D))/(2*a));
** ****** *** ** ** * **
* * * * *** ** *** * (D == 0)
* * * ** *** ** *
** * * ** * ** ** ** * *** * real and same\n");
******* ** * * **** * ******* ** ** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** * * * **** **** **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** * * * *
* ** ** * ****
int main()
{
* **** * **** ** *** * a,b,c,D = 0,x1 = 0,x2 = 0;
** *** * ** * *** **** ** ** ** ** * * *** * *** ***** ***

* * * ** **** * **** * ** *** **** of %.2fx^2 + %.2fx +%.2f = 0 *** ******
* * * ** *** ** ** * * = (b*b-4*a*c);
** * ********** * ** (D < 0)
* *** ** ** ** *** * *
* *** *** *** *** * * *** complex and ** *** * ***
* ** * * ** * ****** *** *** = *** *** * * ******* * * *
* ** * * * ****** ******** * * * * * = * * ** * *** ** ** ** *
* *** *** ** *
* ** * ********* * *** (D > 0)
* ****** ** *
*** * ** ***** *** * * * *** real and ***** * * * ***
** * *** ******* * * *** * ** = * * ** *** + sqrt(D))/(2*a));
* *** ** * ** * * *** = %.2f",(-b - sqrt(D))/(2*a));
***** *** * * * *
******** * * ***** * * (D == 0)
* * * * ** * * * *
***** * ** ** ** * **** real and same\r\n");
* *** ** ***** **** * * **** = x2 = %.2f",(-b + sqrt(D))/(2*a));
*** ** ** * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** ** ** * ***
* * * * * ** **** *
int main()
{
** ** * *** * * * *** ** **** a,b,c,D = 0,x1 = 0,x2 = 0;
* * * * * *** ** * * * * ** * **** *** ** * *

** ** **** * * * * * ******** ** * of %.2fx^2 + %.2fx +%.2f = 0 * *** * *
* * ***** * *** *** = (b*b-4*a*c);
***** * * ** * ** (D < 0)
*** ****** ** * **** * * *
*** * ** *** * * * complex and * *********
*** * * ** * * * * *** * = * ** * * ** * * ***
** * ****** * * **** ****** *** * * = ** ** * * ** ** ***** * *
****** * * * *
* ****** * ** * * ** (D > 0)
** **** * **** * * ** *
******* ** * * ** * * * real and * * * ** ** *
* * * *** * * * *** ** * * ** ** = **** * *** ** + sqrt(D))/(2*a));
********* *** ** *** ** ** * * **** = %.2f",(-b - sqrt(D))/(2*a));
* * *** *** * ** *
* * * * ** *** * * **** ** (D == 0)
** ** * *** ** **
* * ** ** * * * * **** * * * real and same\r\n");
***** *** ****** ** *** *** *** ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** *** * * * ** **** ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** ** ** **** *
* ** * *** * *
int main()
{
** **** ** ** ** ** ******* a,b,c,D = 0,x1 = 0,x2 = 0;
***** *** * * ******** ** * * * * *** *** * * * * * * * *

* * ***** * **** ** * *** *** ***** of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
** * * *** * ** * = (b*b-4*a*c);
* * * ** * * * *** **** *** = (-b + sqrt(D))/(2*a);
**** * * * *** * ** **** = (-b - sqrt(D))/(2*a);
*** ** ***** **** * (D < 0)
* **** * * * *** * **
* * * ** * * * ** ** * ** ***** * complex and * ** * ** **
* * * * ** * * * ** * *** = * ** ** * ** * *** ** *
* *** ** *** ** ** * * * *** * * = * * **** ***** **** ***********
* **** ** * * *
** * ** * *** *** * ** * (D > 0)
* * ** ** * * **
*** * * * ** * **** ** * * real and * * * * *
* * * ** *** ***** **** ** **** = *** * ** *
* ** ** * * ***** * * * * ** = %.2f",x2);
* *** ****** ** ** * **
* ** * ** ** * ** ** ** * * * (D == 0)
* ***** * * ******* * ** ** ** **
** ** * * *** * *** * **** ** real and same\r\n");
* * * ***** * * ** * * * *** * * * * *** = x2 = %.2f",x1);
**** *** * * ** * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.71.120.164
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users