0 like 1 dislike
12k views

Write a program to find roots of a quadratic equation

quadratic equation is a second order equation having a single variable. Any quadratic equation can be represented as where a, b and c are constants ( a can't be 0) and x is unknown variable. 

寫一個找二次方程的求根程式

For Example

 is a quadratic equation where a, b and c are 2, 5 and 3 respectively.

To calculate the roots of quadratic equation we can use below formula. There are two solutions of a quadratic equation.

使用下列公式:

x = (-b + sqrt(D))/(2*a)
x = (-b - sqrt(D))/(2*a)

where, D = (b*b-4*a*c) is Discriminant (判別式), which differentiate the nature of the roots of quadratic equation.

For the complex result (複數根):

realPart = -b/(2*a);
imaginaryPart =sqrt(-D)/(2*a);

Note: We have used sqrt() function to find square root which is in math.h library.

 

Example input 1:

1 2 1

Example output 1:

Roots of 1.00x^2 + 2.00x + 1.00 = 0 are real and same
x1 = x2 = -1.00

 

Example input 2:

1 -3 2

Example output 2:

Roots of 1.00x^2 + -3.00x + 2.00 = 0 are real and different
x1 = 2.00
x2 = 1.00

 

Example input 3:

1 2 2

Example output 3:

Roots of 1.00x^2 + 2.00x + 2.00 = 0 are complex and different
x1 = -1.00+1.00i
x2 = -1.00-1.00i
[Exercise] Coding (C) - asked in Chapter 5: Selection Statements by (5.2k points)
ID: 28934 - Available when: 2017-10-26 18:00 - Due to: Unlimited

reopened by | 12k views
0 0
We will continue this question in few days
0 0
Everything is fixed. Enjoy your time with The Judge :)
0 0
ANNNNNNNNNNNNNNNNNNNNNNNNNNGRYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
0 0
Your code has newline at the end sometime. You learned this lesson many times!
0 0
After i correct the newline in my code,there is still wrong output.However,I had run the program in Codeblocks.The output is still as well as the result. Seeking for help.
0 0
your output lack of 1 space at line 8 when print out "Roots of ...". Please be careful with all small details when working with online judge

56 Answers

0 like 0 dislike
Hidden content!
* ** ** ** * * *
**** * ** * ******

int main() {
*** * ** * * ** * * ** * * * ****
****** * * *** * **** * * ** ** * %f * ** &a, &b, *** * *
* * *** * * * * * * * ****
* * * * ** * ** * * * * ** * {
*** *** * ** * * * ** * * * * * * * ** *** ** *** of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** ** ** = ** * = ** * * * * * a, b, c, (-b)/(2*a), **** * * (-b)/(2*a), *** ***
*** * * *** * * * * * * **
* * * ** ** * **** *** if(d==0) {
** * *** * ** * * **** ***** ** * ** ******* *** * ***
* ** ** * * ** * ** **** ****** * ** *** * **** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * a, b, c, x1);
* **** * ******* ** ** *
** ** ** * ** ** ** ** {
*** * *** ** * *** ** ** * ** * * * ** ** * * ** * ***
* * ** *** * **** **** ** * **** * * * * * ** * **
** ** *** ****** ****** ** ***** * * *** ***** * ** *** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and *** * ** * = %.2f\nx2 = * *** * a, b, c, x1, x2);
** ** *** ** * * * **
}
answered
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include ***** * ***
* * ***** * * ** *
#include *** * * ** **

int main()
{
* * ** * ***** *** * ***** *
** *** ** ** * ** * *** * * %f * * ** * ** * ** * *
* * * ** * * ** ** *
* * * * * *** * * *** ** ***
* ** * * * ** * * * *
* ***** **** ** *** ****** *
* ** * ** * ** ** * * *** ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and ** ** = %.2f\nx2 = *** * * ****
** * * ** ** *** * * *** if(D==0)
*** ******** ** ***** ***** * ** * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = *** *** * *** **
* *** ***** * * ** *** **
** * *** *** * ** ** * * ** ****** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and ** ** * = * * * ** = ** * * *** * ** ** *** * * * ** * **
*** *** * ** *** **** ** * *** 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include * ** * * *
** * * *** *
* * *** * * ** * *

int main()
{
* ******** * ***** * **** ** * ** *
* * * * * *** ** ** *** *** * %f ** * ** * *** * **** * **
** *** ** ** ** *** * *** * *
** ** * ** ******* *** **
* ** ******* **** ********** * * * ** *
* ** ** * * ***** ** *** ** *
* * ** ** ** * ** * * * ** * * of %.2fx^2 + %.2fx + %.2f = 0 are real and * * * * = %.2f\nx2 = * * * * **
* ** * * *** ****** * * **** * *
* * ** ** * *** ** * * * * ** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\nx1 = x2 = ** * * *******
* ****** ** * ** ** * ***
*** ** ** * * ** ** ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and *** = %.2f + = %.2f - ** *** * * ** ***** ** ***
**** * **** * * ** *** * * 0;
}
answered by (-498 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Wrong output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
** *** ** * ********* ** a,b,c,x1,x2,D;
* * * ** ** ** *** * * ** %f * * * * * *** *
* * ** * ** * **
**** * * ***** * ** * * = (-b + sqrt(D))/(2*a);
*** * * * * *** * * * = (-b - sqrt(D))/(2*a);
********* * * * ** **
** ***** * * **** * ********* *** ** * * * * * *
* ** ** * * * **** *** * * * ** * * ** *** * * * * * ***** * * * * of %.2fx^2 + %.2fx + %.2f = 0 are real and different\n",a,b,c);
** ****** ****** ******** **** * * * * * * ** * * * * * * ** ** ** = %.2f\n",x1);
******* ** * * ** * *** *** * **** * ** * * ****** * **** * * ** * ** * * = %.2f",x2);
** * ** * * * ** * * *** *** * * *
** *** * *** * ***** * * if(D==0)
* *** ** * * ****** ** * **** ****** ****
** * *** ** * * * * * * ** * ** **** ***** * ** * ** *** * * * ** * **** of %.2fx^2 + %.2fx + %.2f = 0 are real and same\n",a,b,c);
** *** ***** ** *** * *** * **** ** * ** ** *** ** **** * * ****** = x2 = %.2f",x1);
** *** * ** * * *** ** ***** *** *
*** ****** * ** ** * ** *
* * ** *** * * * * *** * ** * ***
** ** * ** ** ** * ** ** * *** ***** * * * ** * ** * * ** * of %.2fx^2 + %.2fx + %.2f = 0 are complex and different\n",a,b,c);
* ** * * ** ** ** * ** ** * ** * * * ** * ** ** * * * ** * *** *** * **** = * * **** * *** ** * ** *
* * * ** * * * * **** * ** * *** * * * **** *** * * *** ** ***** ***** * ********** *** * = * * * **** * ******* *
* ** ** ** * * * * ** *** **** * ***
** ** ** * ** *** * ***** 0;
}
answered by (-258 points)
0 0
Case 0: Correct output
Case 1: Correct output
Case 2: Correct output
Case 3: Correct output
0 like 0 dislike
Hidden content!
#include <stdio.h>
#include <stdlib.h>
#include<math.h>
int main()
{
* **** ******* *** * * ** a,b,c,x1,x2,D;
**** ****** ** * ** * *** %f * * * ****** ** * * *** *
* **** ** * * * *** *
* ***** ** * * * ** * * = (-b + sqrt(D))/(2*a);
* ** *** * * ** *** *** = (-b - sqrt(D))/(2*a);
** * **** * ** * * ** *****
**** * **** * ** ** * ** **** *** * *
* * ** ** * * * * ** ** *** * * * ***** *** * * ** * ** ****** *** *** of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
**** *** **** ******* * ** * ** ** * ** ** **** ** ** ** ** ** * = %.2f\n",x1);
** ** * ****** *** * * *** ** * * ***** ***** * ***** * * * **** * * * * * * * * = %.2f",x2);
* * ***** ** ** *** ** ****** *** * ***
*** * * * *** * ** if(D==0)
* ***** * * * * **** * * **** * * ** **** **
* * * ** * * * *** ****** *** * * **** * * *** ********** * * * ** * ** * of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
*** * * * ** * * ** * * ****** * ** ** ** * ** *** * ***** ** * * ** = x2 = %.2f",x1);
*** * * * * ** ** * * * * * * * * *** ***** * ***
** *** ** * ******
* * *** ** ** ** ** *** ** ** ** * *** ** *
* * ** * ** ****** *** * * * * * * * **** * * * *** *** * ** * **** * of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
* * * ** ** **** **** * * * **** ** ******** * * *** ** ********** *** ** = ***** *** * * ** *
* ** **** * * * ** * * * *** * * * **** * ** ** ***** ** ** * ** = * * ** ** ** * * ******
* * * * ** * ** * ** * * **** * *
* ** *** *** * ** 0;
}
answered by (-258 points)
0 0
prog.c: In function 'main':
prog.c:13:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:19:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are real and same\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
prog.c:24:20: warning: too many arguments for format [-Wformat-extra-args]
             printf("Roots of %.2fx^2 + %.2fx + 1.00 = 0 are complex and different\n",a,b,c);
                    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 like 0 dislike
Hidden content!
** * * ****
**** * * *
int main()
{
* * * **** ** *** ** * * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * **** * * *** ** **** * ** * * * * * * *

** ** **** * ****** ** * * *** **** * of %.2fx^2 + %.2fx +%.2f = 0 * ** **
* ** ** * * *** ** **** * * = (b*b-4*a*c);
* ** ** * * * ** ** (D < 0)
* * ** * * * *** * * * * *
*** * * * ** ** *** ** * **** complex and * ** * * ** *
* ** ** ** * *** ** ** * * * *** = ** * * **** ** ***
*** * ** * * ** * **** * * * = * ** * * * ***** *****
** ** ** * ** **** *** *
***** * ** ********* * (D > 0)
* * * ** ** * *
* * ** * ** ** * ** ** real and * * ***** *
** ****** * * ** ** * ****** = ** * *** + sqrt(D))/(2*a));
*** ** *** * * *** * * ** ** * = %.2f",(-b - sqrt(D))/(2*a));
* * * * *** * ** *
* **** * ** * ***** (D == 0)
** * * * ** ****
** * * * * * * * ** * ** *** * * ** * real and same\n");
**** * ** ** ** * * ** = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** ** *** * ** * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 0
your output lack of 1 space at line 8 when print out "Roots of ..."
0 like 0 dislike
Hidden content!
* *** ** *
** * ***** *
int main()
{
*** * * * * * *** * * a,b,c,D = 0,x1 = 0,x2 = 0;
** * **** * **** *** * * * *** ** * ** ** **** * * * *** **

***** * * *** ***** *** ** * ** * of %.2fx^2 + %.2fx +%.2f = 0 * ** ** ***
* * ** ** * ** ***** ** * = (b*b-4*a*c);
** ******** * * *** * * * (D < 0)
** * **** *** **** * * ***
** * ** *** * * ** ** * * * ** complex and *** * *** *
* *** *** *** * * ** * ** *** * * = * * * * *** *** ***** * * * **
* * * * ** * ** *** * *** ** = * **** **** ** ** ***
** ******* * *** * **
**** * ******** **** *** (D > 0)
*** ** *** * * ** *** * ****
** * * * ** * * **** *** ** ** * * real and ** *** * * ***
* *** * * *** * **** * * * * * = ** ** ** + sqrt(D))/(2*a));
** ***** * * **** ** * ** ****** * *** = %.2f",(-b - sqrt(D))/(2*a));
* ** *** *** *** ** ****
* *** * * ****** ***** (D == 0)
* * **** ** * * * **** *
* * ** * * ** * * * * * ** ** * real and same\n");
*** ** * * ** * * ** * *** * *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
** ** ** * * ** *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
** **** * * **** * *
***** * * ** * * **
int main()
{
**** ** * *** * * *** *** *** a,b,c,D = 0,x1 = 0,x2 = 0;
** *** ** * * ******* * *** * ** ** ** ** * **

*** * **** * *** * ** ** ** of %.2fx^2 + %.2fx +%.2f = 0 * ** * * ***
* **** ***** * ** ** = (b*b-4*a*c);
* * * * * * * ** *** (D < 0)
** ***** * * ** ** ** *
** ****** * ** * ** *** complex and **** *** *** *
* ** ** ** ** * ***** * *** * ** = ** * ** *** *** **** *
***** ** * * **** ***** **** * * = ** **** *** *** * * *** *
* **** * * * * ** ** ** * ** *
** ** * * * * ** (D > 0)
** ** *** * * *
* * * * **** * * ** * **** * ** * real and * ***** *****
*** *** *** ***** * * *** ** * * ** = * * * * + sqrt(D))/(2*a));
* * ** ** * * ** * * * ** * * = %.2f",(-b - sqrt(D))/(2*a));
** * * * *** **** ***
**** **** * * * * * (D == 0)
* *** *** ** ** *** **
* **** * ****** * ****** * * *** real and same\r\n");
* * * *** ** ** *** = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * ** * * ***** * ***
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
**** * ** ***** *
** ** **** **
int main()
{
*** * * * * * * ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
***** *** * * ** ** ***** * ** * **** ** ** * * *

* *** ** * ***** ***** * * * of %.2fx^2 + %.2fx +%.2f = 0 * ** **** ***
** * ** * * * * * ** ** = (b*b-4*a*c);
* *** * ** * * (D < 0)
* ** *** *** ** ***
* * * * *** * * * ** complex and ***** *** ***
**** *** * * * * * * * *** * ** = * ** *** * * * * ** * ** **
* ** * * ** * * ** ** * * * = * ** ** * ** **** ***
* * * ** * **** *******
* * *** **** *** (D > 0)
*** * * ** **** * *
* * * ** * ***** ** * * ** * real and * *** * * ** **
*** * * * * ** ** ** ** **** * * ** = * ** ** * * + sqrt(D))/(2*a));
**** * ** * * ** * *** * *** * * = %.2f",(-b - sqrt(D))/(2*a));
** * * ** **** * * ** *
* ** ** * * * * *** (D == 0)
* ** * ** * ** ** ****
* ** * *** * *** ****** * ** *** ** real and same\r\n");
* **** * * * *** ** * * *** * = x2 = %.2f",(-b + sqrt(D))/(2*a));
* * * * * * *
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
0 like 0 dislike
Hidden content!
* ** * **** *
*** * ** ** ***
int main()
{
*** * ** ** ** ** a,b,c,D = 0,x1 = 0,x2 = 0;
*** * * *** * ** **** **** * ** ** ** * ** ** ** **

** * *** * ** * ** **** ** ***** * of %.2fx^2 + %.2fx +%.2f = 0 are",a,b,c);
* ** * * ** * * * *** = (b*b-4*a*c);
**** * ***** ** ** = (-b + sqrt(D))/(2*a);
* * ** * * * ** * * * = (-b - sqrt(D))/(2*a);
** * * * * * * * * (D < 0)
* * ****** **** ***** * *** *
**** * * ** * ** * *** ** complex and **** ** * *
*** * *** ***** ** *** *** *** **** = *** * ** **** ** ***** *
****** * * * ** * * * ** *** = * ***** *** * ** *
* * * ***** ** * *** ***
** * **** * * *** * * (D > 0)
* *** ** * ** ****** ***
* * * * * * ** * * ** * **** real and **** ***** * **
** * * * ** * * * * ** * = *** * * *
* ******** * * ** * ** ** = %.2f",x2);
*** * * * **** * *
*** ** * *** * *** * (D == 0)
*** * ** *** *** ** *
*** * * * ** * ****** **** * *** real and same\r\n");
** *** * * ** * ** * = x2 = %.2f",x1);
* * **** * * * * **
}
answered by (-214 points)
0 0
Case 0: Wrong output
Case 1: Wrong output
Case 2: Wrong output
Case 3: Wrong output
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.241.33
©2016-2025

No related questions found

12,783 questions
183,442 answers
172,219 comments
4,824 users