0 like 0 dislike
1.3k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.3k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * ** * * *** * ***** * * * * * **** *

    for(i=3; i<x ;i++){
* * ** * ** * ** *** ** ** ** * * * * ** j<x-i ;j++){
* * *** * * ** ** * * * * ** ***** ** *** * ** * *** ** * * ** *** * k<x-i-j ;k++){
** *** * ***** ** * **** ***** * ******** ******* * ******* * * * ** * *** * * ** * i*i + j*j == k*k ){
*** * * *** * * * * ** ** *** ** * ** * * * * ** ** *** * ** * * * ** * ** * ** ** * * * **
****** * * * * * ** * *** * ** **** *** ** ** * * ** *** * ** ** * * * ** **** **** * ** ** *** *** * ** ** **** *** * ** * **


* * ** * * ** * * * ******* * ** ** * * * * *** * * * * ** * * ** ** ** *** ** ** * %d %d",i,j,k);
** ** ** ** *** * **** ** * *** **** *** ** * **** ** *** * ***** ** * ** * * * * *** * ** *** * * * ** * * ** *


** *** *** * ** * ** *** * * * ** ** * * *** ******* * *** *** * *** ** **** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
******* * * ** * ** * ** **** x,i,j,k;
******* * ** * * **** ** * ********* * * **
* * *** * * *** ***** * ** * i<x ;i++){
** *** * ** * * * ** * * * * * ***** * * * ** **** ** j<x-i ;j++){
** * * ** **** * * * * ** ** * * * ******* * * * ** ** * * * ** ** ** * *** k<x-i-j ;k++){
**** * * * * ** ** * ** ***** ***** ** * ** * *** ***** **** *** * **** * i*i + j*j == k*k ){
** * * * * * *** * ******* * ** *** * ** * * * ** * *** *** ** ** ** * * * ** * **** *** * * *** *** ** * * * *** ** ** %d %d\n",i,j,k);
* *** *** * ** ** * * * * ** * ** * * *** ** * * ***** * * ***** * ** *** ** * * *
*** ** * *** ***



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** ** * * * **
* *** * ** ***
** ** *** *** ***
** ***
*
* * * *** ** *
** **** * * * * **
*
*
* * * * *
* * *
*
*
* * *
* *

* **** * ** ** i * = i * = i * * ***** ** * ***** * * *
**
*** ** ** * ** ** * * * * * ** * **** **** * *
** *
** * * ** * * ** ** * * * = * * * * ***** ** * **
**
** * * * ** ** *** * * * * * * = i * ** * ** ** *** ** * *
* = *
* = * ** * * * * * * * * * *** * ** ** * *
* *
*** * * * * * * * * * * * * * ** * * * **** * *
*
* * * * *** * * * * * * * * * *** ** ** *





*** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * *** *** *
* * * ***** ** * * ***
* * *** * ****
** * ***
**
* * ***
* * * * ** * * ***** * ***

** *
*
* **
** *
*
** *
* *

** * * * * i * * = i * * = i * * *** * * * * * * *** **********
* * *
* * *** * * ** * * * * * *** **** * ** *** * * **
*
* ** * * * * * *** = * ****** * * * *** * * ***
* * *
* ***** ** * * * * * * = i * * * ******** *** ** ** * ** **
=
** = * *** ** ** * * * * * * * * * ** *** * **** ****
* *
**** * * * * ** * * * *** * **** ** ** * * ** * ***
* *
* * ** *** * * * * * * * * * ** **** * *** * * *****



*

* * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** * * ** * **


*****

{
**** **** * ****** a, b, c, n;
*** **** * * **** * **** ******* *** ** * *
* *** ** *** * * ** *** * * * ** *


* * ** **** * ****** = 1; c * * n; c++)
**** * * * *** = 1; a * * c; a++)
* * ******** ** **** * = a +1; b **** c; b++)


** ** ** ***** (a * a + b * b == c * c)
** ** * * ****** *** ** %d ** ** *** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.59.82
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 10.3k views
12,783 questions
183,442 answers
172,219 comments
4,824 users