0 like 0 dislike
1k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * *** **** * ** * ** ***** * * ** * *

    for(i=3; i<x ;i++){
* *** * *** * ** * ** ** * *** ** * j<x-i ;j++){
** * * ** * ** * * ** * **** * **** * ** *** * * * **** ***** ** ** *** k<x-i-j ;k++){
*** * **** * **** * ****** ** ****** ** * * * * * ** * * * ** * * * *** * * ** ****** ******* i*i + j*j == k*k ){
*** ****** ** * ** ** ** ** **** * * * ** **** * ******* ******* * ** * * * * ** * ** ** ** * *** ***** * **
* * ** * *** * ** * ** * * * *** ** * *** * * ** * * * ** * *** * * ***** * ** ** ** *** *** ** * **** ***** *** ** *** * *


** ** *** * * * ** *** ** * *** *** * * * ** * ** ** ** *********** * *** *** * *** * * ** **** * ** *** *** ** * * %d %d",i,j,k);
* ** * * **** * * * ** * ** * * ***** ** * * ** * * ** *** * * ** * ***** ** *** * *** * * *** * ** ******


* * * ** * ****** *** * * * * ** ** *** * * ** ** ***** *** * ******** ** * **** ***** *****



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** ***** ** * * *** ** x,i,j,k;
** **** * * *** ** * *** ** * * *** ***** *** **
** ******** ** * * *** * * i<x ;i++){
**** * * * *** ***** * * ** * * ***** * ** * j<x-i ;j++){
* ** ** * *** * * ** * * * ** * * * ** * ** ** * * * * * k<x-i-j ;k++){
** * ** ** * * * * * ** ** * *** * ****** * * * * * ** * *** **** * * *** *** * * * i*i + j*j == k*k ){
** *** ** *** * * * ** * ** ** * *** ** ** ******* ** * * ****** ** ** * * * ** * * *** * * ** ** ** * *** * ** %d %d\n",i,j,k);
*** ***** * **** * * *** * * ***** * * * * * *** *** * ** * ** *** * *** * * * * * * *
* ** ** **** * * ****



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** ** * * * ** **
* ** * * *** *** *
* * *** * * *** **
* *** *

* ***** * * *
* ** ** * ****** ** ***
*
* * *
* * *
* * *
* *
* * *
*
***
*
*** * * ** ** * ** i * * = i * * = i * **** * * *** *** * **
*
* ** * * ** ** * * * * * ** * * * **** * * * * * *
* **
* ** * * * * * ** * = * * * * ** *** ** * **
* *
**** * * ** *** * * * * * = i * * ** * * * * ** **
=
* = ** **** * ** * * * * * * * * * * **** * **
*
*** *** * * * * * * * * ** * * * * ** ***** *

* * * * ** * * * * * * * ****** * * * * * * *** *
*

*

*
* *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** * * * ****
* *** ***** ***
** * * ** *****
* * *
*
* * ** * * * ** * *
* * ** * ** ** * * ***
*
* ***
*
* * * *
* *
* *
*
*

* * * ** * i * = i * = i * * ****** * * ** *** ** **

** * * ** * * * * * * *** ** ** * * * * ***** **
* *
* * * * ** * ** ** * * = * * * * ** * * * ** ***

** * * * **** ** * * * = i * * ** **** * * * * * * *
= *
** = * * * * ** ** * * ** * ***** * * * ** *** *

* * * *** ** * * ** * *** * * * * * ** * ** * *
* *
* * ****** * * ** * * ***** * * ** ***** ***

*


*
******
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
**** * * * *


*

{
* * ** *** * * * * a, b, c, n;
** *** *** * * ***** * * * ** * * ** **
* **** * ** ** * ****** * ** * * * ***** ****


*** * *** **** * * = 1; c * * * n; c++)
* * ** * * * * = 1; a *** * c; a++)
* * * ** ** * *** ** = a +1; b * * c; b++)


** ** *** * (a * a + b * b == c * c)
* * * *** ** * ****** %d ** * * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.130.25
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.7k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 7.9k views
12,783 questions
183,442 answers
172,219 comments
4,824 users