0 like 0 dislike
1.3k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.3k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * ** * *** * ** * * * * *** **

    for(i=3; i<x ;i++){
* **** * ***** * *** * * * * ** ***** ******* j<x-i ;j++){
***** ** ** **** ** * **** *** * * ** * **** * ** *** * * * k<x-i-j ;k++){
*** **** * ** ** ** ****** ** * * * ** * * ** *** * * * **** * **** *** *** * i*i + j*j == k*k ){
* * ** * *** ** * *** * * * * *** * **** *** ** ** * ***** * ** * ****** **** * *** ** ** ** * ** ** ** * * * **** **
*** * *** * *** * * * ** ***** * *** ** * * * * * *** * * * ** * *** * * ***** ** *** * * ** * ** ***** *** ** * ***


** * ** * * * * * * * ***** ** *** * *** * * *** * * **** * **** ** * * * ** * * * * * ** * *** %d %d",i,j,k);
** * ** ** ** ****** * ****** * * *** ***** ** * * * * * ** ** * * * ** ** * **** * * * * ******


** * ** ******** ** * * * ** * ** ** * *** * **** * * **** *** ** ***** **** *** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * *** * * * *** * x,i,j,k;
*** ** * ***** **** * ** **** * ** * * *
* * ***** ** * * * **** * i<x ;i++){
** ** * * ** *** * * * * * * ** ** * * ** * j<x-i ;j++){
** ** *** ** *** ** * * **** *** *** * *** * * * ** ** * * *** * ** k<x-i-j ;k++){
* * * ** ** ***** * * *** ** * * ****** ** *** * * * * *** * * ** * * * ** * ** * *** i*i + j*j == k*k ){
*** ** * **** ***** * * ** ****** *** * * ** * ** * ** *** ** **** * * * * * * * * * * * **** **** * * * * %d %d\n",i,j,k);
** * * ** ******** * ******* * ***** *** * ** * ** * * *** ** * *** *** ** * ** * * ** ****
* * *** * * ** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* ** ** ** *** **
* * ** ** ** **
* ** * ** * ***
** *

* ** ** * * * **
*** *** *** ** *

*
* *
*
**
* * * **
* *
* *

* * * ** **** *** i * ** = i * ** = i * ** ** **** * *** * *
*
* ** * * * * * * * * * ** * ** * * * **** **
* * *
* * * * * *** * * * * * * * = * *** * * *** * * * **
* *
*** * * * *** * ** * * * * * = i * ** ******* * * ** * * ****
* =
= * * * * * * * ** * ** * * **** ** *** * *
** * *
* ** ** * * ** *** * * * * * ** **** ** *
*
* ** ***** * *** * * * * * * **** * * * *** **** **
*
*



**
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ** * * *
* * ** * * * * * * *
**** * * * * * *
** * * * *

* * * ** * *
*** * ** * *** ** *
*
* * *

* **
*
* * **
**
* * * **

* * * *** * i * * = i * ** = i * * ** * *** ****** * * ** **
* * *
* * * *** * * * * ** * * ** * * ** * * * ** * *
* *
* * * * * ** ** ** *** * * * * = * ** * * * * *** *

** *** ** * * * ** * * ** = i * * * * ** ** * * ** * *
* =
* * * = ** **** ** ** ** * * ***** * * * * **** * *

* ** * ** * * ** * *** * * * * * *** * ** **
** **
** * ** * * * * * * * * * * * * **** ** ** ** * * * *

*




answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * *** **


* * *

{
* * **** * **** *** a, b, c, n;
** * *** **** *********** *** *** **** * * ** * *
* * *** * ** ** ** ** ** ***


**** **** **** ****** = 1; c * n; c++)
** *** **** = 1; a ** c; a++)
* * * ***** * * * *** * = a +1; b c; b++)


** **** * * (a * a + b * b == c * c)
** * * * ** * *** * * *** %d ** * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.130.53
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 10.3k views
12,783 questions
183,442 answers
172,219 comments
4,824 users