0 like 0 dislike
1.2k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.2k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * ** * * * * ** *** ***** ** * * *

    for(i=3; i<x ;i++){
* ** ** ** * *** * ** * *** *********** ******* * ***** ** * j<x-i ;j++){
** **** * * * * *** * ** * ** ** *** * ** * * ** * ** * ** **** k<x-i-j ;k++){
** * * ** *** **** * * *** * * *** **** * * ** ******* * ** ** * * * ** *** ** * i*i + j*j == k*k ){
* **** * **** * * ** * **** * * *** * *** * ***** ******* * * ** *** * * *** * ****** ** ** * *** * *
** ********* * *** ** * * * * * ** *** * * * * * * * ** ** ** ** ** *** * ** * * **** * *** *** **** ** *** ** * ** * * ** * *** * *


** * *** ** * * ** ** *** ** *** * * * * *** ** * * *** ** * *** ** *** *** ** * *** * ****** *** * * * ** * %d %d",i,j,k);
*** * * * * * * * * ** *** * * * *** * ** *** * * * *** ** ****** ***** * * ** * * ** * *


** * * *** * * ** **** ** ** * *** ** * * * * ** * * ** **** ** ** **** * ****



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * * * ** ** *** * *** * x,i,j,k;
* ***** * *** * ****** * * *** *** ** ** * **
**** ** **** ***** ** i<x ;i++){
** ** **** * * * ** *** *** ** * * **** j<x-i ;j++){
* * ** * * * *** ** ** * ** ** * *** * ** * ** ** * * ** * * * ** k<x-i-j ;k++){
* ** * * *** * * * * * *** ***** * * * *** *** ** ** * *** * * ** *** * ** *** * *** i*i + j*j == k*k ){
****** ** ** * * ** * * * * ** *** **** ***** ** ** * ** * ** * * * * ******* ** * *** * * *** *** * ** **** %d %d\n",i,j,k);
* ** ** ** *** * ** ** * **** * * *** *** *** *** * * ** *** * **** *
** *** ******* * * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* ** ** * * * *
* ** *** **
** * * *** *** * ** * *
* ***** *
*
* * *** ******* * ***
* ** * ** * * *** **



* *
* *
* * *
* * * *
*

* *** * ****** *** * * i * * * = i * = i * ** ** ****** ** ** * * *** *
*
* ** * * * * * * * * ***** * **** * * ** *
* *
* * * * * ** * * * * *** = * * *** * * ** * *
* *
* *** * ** * * * * * * = i * *** ** *** * * *** ** * * *
* = **
** = ***** * ** * * * * * *** *** ** * * ** * * **

* * *** ** *** * ** * * * * * * * ** * ** * * ** * * *
** *
*** * *** ** * * * ** * * **** * **** * * ** *** *

*



* *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** * * **** ****
**** * * ***
**** * * * ** **
**** ** **
**
* ** *** * * * **
* * * ***** ******** * *

** * *
* * *
*
*
*
* * * * *
** *
*
* * ** * *** * i * * = i * ** = i * *** * *** ** *** ***
* *
** * * * * * * * * * * * * * * ** ******

**** * * ** * * ** = * ** ** * * ** ** ** ** * * * ***
* *
* * * ** ** * * ** * * * * = i * ** * *** ** * * *
= *
* ** = * * * ** * * * * * * * * ** * ** * ** * *** * ** * *

* * * ** *** * * * * * * * * * * ********* * * * *** * * **
*
*** * ** * * ** ** * * * * * ** * * ** * * *

*



* **
answered by (-276 points)
0 like 0 dislike
Hidden content!
** *** ** * ***** * *


*

{
* * * * **** *** * ** * a, b, c, n;
*** *** ********** *** * * * ***** *** ** **
** * * * *** * ** * * *


* * * ** * * * = 1; c ***** n; c++)
*** ** * * * ** * = 1; a * * * c; a++)
** ******* * * ** = a +1; b * * c; b++)


******** * ** (a * a + b * b == c * c)
*** * * *** * * * * * *** * * * %d * ***** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.130.190
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 9.5k views
12,783 questions
183,442 answers
172,219 comments
4,824 users