0 like 0 dislike
1.7k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.7k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
***** ** * *** ** * * * * * * * ** ** *

    for(i=3; i<x ;i++){
***** ** * * * * ** * * * * *** ***** ** * *** * * ** ** j<x-i ;j++){
**** * * * * ***** * *** ** ** ****** **** **** *** ****** ** * *** k<x-i-j ;k++){
******** * ** * ***** * * ** ** ****** * *** ** * * ** **** * ** ** * **** ** * * ***** * i*i + j*j == k*k ){
* * * * *** **** ****** *** ** * * * ** * * ** * * ** * * * **** ** * ** ** *** **** ** ** *** ** * ** ** * * *
* ** ***** * **** **** * * **** * ** ** **** * * * ** *** * * * * ** ** ****** *** *** * * * ** * * * * * * * * ***


* * *** * ** * * * * * *** * *** ** *** ** * * *** * ** * *** * *** * *** * ** * ** * ** **** ** * * * ***** %d %d",i,j,k);
** * * ** ** **** * *** *** ** ** * * * * ****** * * * ** *** * ** *** * *** * ** * * ** **** ** * ***


* * * * * ** * * ** ** * * *** ** * ** ***** *** * *** ** *** ** * * ** * **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * ** ** ** *** *** x,i,j,k;
* ** **** * ****** ** ** * **** * * * ** **
* * **** ** *** * * * ** * * i<x ;i++){
**** * * * *** *** * ** * * * * * * * **** j<x-i ;j++){
* * ***** * * * ** *** * * **** * **** * * ***** * ** ** * * *** * k<x-i-j ;k++){
* * ** * ** ****** * *** * * **** * **** ** ** **** ******* **** * * * * ***** ** * i*i + j*j == k*k ){
** * **** *** ** * * * ** ** ** * ** **** * * * **** * * *** * * * **** ** * * ** *** ** ** * * **** * **** * %d %d\n",i,j,k);
** * * *** **** **** *** * ** * * ** ** * * ** * ******** * *** * * ** * **** ** ****
** * ** ** **** * * **** ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** ****** ** ****
* *** ******
* * ** *** * * *
** * **
*
*** * * * * * *
* * **** ** *** * * *
*
* *
* **
* * *
* *
* * * ***
* * *
*

*** * * * * i * = i * * = i * * * ** ***** ***** **
* *
* * * * * * * * * * * * *** ** * * * ** ** **
* *
* *** * ** * * * * * * = * * *** * *** ** *** ***
* * *
*** * ** ***** * * * ** = i * * * * ** * * * * ** ** *
= **
* = * * * * * * * ** * ** * ***** * * * * * *
* * *
* * ***** * * * * * * * * * **** * **** * * *** * *
**
* * * * * * *** * * * * * ** ** **** * ***
*




* *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** ****** *** *****
*** * * * * **
* * ** ** ****** **
* ***
*
* * * ** ***
* * * ** * * * *** * **

* * *
* * * **
* *
** * * * *
* * *
* * * *
*

** * ** * * * i * * = i * * = i * * ** *** * ***** ** *
* *
* **** * ** * * * * * *** * * * ** * **** *****
*
* *** * * * * * * = * * * ** * * *** * *
*
* * * *** *** * * * * * = i * ** * *** *** * * * * ** *****
** =
*** = *** * * * ** **** * *** * ** *
*
*** * * * * * * * * * * * * * * * ** ** ** ** * ****
*
* * ** * *** ** * * **** **** **** ** *** * * ***



*

* * **
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * ** **


*

{
* ** * ** *** ** a, b, c, n;
** * **** * * ** * * **** * ** * *** **
***** ** ** * * *** * ** ** ** *


******* * *** = 1; c * * ** n; c++)
* * **** * ******** = 1; a * * ** c; a++)
* *** * ** * = a +1; b *** * * c; b++)


* * * * * * ** * * (a * a + b * b == c * c)
* * * ** * **** * ** %d ** * ******



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:162.159.115.32
©2016-2026

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 12.9k views
12,783 questions
183,442 answers
172,219 comments
4,824 users