0 like 0 dislike
1.4k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.4k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** *** * * ****** **** * **** ** * *

    for(i=3; i<x ;i++){
* * * * * * * * ** *** **** **** ** **** **** * j<x-i ;j++){
* *** ** *** **** * * ** * ******* * * ** ***** * **** * * * ** * * * k<x-i-j ;k++){
* * * * * * * ** ***** *** * ** * *** *** * * *** * * ** * * * *** * * *** * i*i + j*j == k*k ){
** * ** * ** ** ** * * * * *** **** ** *** ** * *** ** ** ** * * *** * *********** ** ** ** ** * * * ** * * *****
* ** ** ** **** * * *** ** ** ***** ***** *** * * ** * ** * ** *** * * **** * ***** *** * * ** * * ** ** * * * **


* * * ** * * ** * *** * * * ** * **** **** * ** * *** ***** ** * * * * ** * ***** ** * *** * * * * * * * * %d %d",i,j,k);
* * ** * ***** * * *** * ** *** ***** ** ** * * *** * ****** * * * ** * ******* * * * **


** * ** * **** * *** * * * ** * ** *** * ******** * * * ** * ** ** * *** * * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * *** **** * * * x,i,j,k;
* * **** * * * * * * * ** *** ** * ** ** **
*** ** * * **** * * * * i<x ;i++){
* * * * * * ** * * ** *** * ** * * j<x-i ;j++){
* * *** ** * * * ** * ** *** * ** * * ** * *** ***** ** *** k<x-i-j ;k++){
* * *** * * ** * ** * **** * ** * * * * *** * *** * ** ** ** ** ** **** * * * * i*i + j*j == k*k ){
** * * ** ** ** * ** * ** * * * *** * **** ** *** ** * ** * ** * * ** ** ** ** *** * *** * * * * * *** ** ** * * %d %d\n",i,j,k);
******* * * ** *** **** * **** * * *** *** ** **** * ** *** ** * ****** *
* ***** ***** * ** * **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* *** * *** *****
** *** ** * * * ***
** * ******* **
** ***
*
** * * * ** ***
* * ** ** * **

*
*
* *
** * *
* * *
* *
* * *

** ** *** * ** * ** * i * * = i * ** = i * * *** * * * * * * * ****
* * *
* **** * * * * * * * * * * * * * * * * * * *
* *
** * **** * * ** * * * = **** ** * ** ** *** * ***** *

** * * ** * **** ** * * ** = i * *** *** * * * * ** ***
= **
* = * * ** * * ** * * * ** * * ** ** ** * ** *
* *
** * * * * * * ** * ** * ****** * * ** *
* *
* ***** * ** * *** * * * * * * ** * ** ** * *
*

*

*
* *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ***** **** * * * **
*** * **** * *
**** * * ** * * *
** * * *
*
* *** * **
* * ** **** * *** *
*
* *
** * *
* * **
* ***
** * * *
*
** *

** * ** * * i * * = i * ** = i * * ** * * * * **
*
* * ** * * * * * * ** * ** * * * * *** * ** * *
*
*** * * ** * *** * * = *** * * **** * ** * *
* *
**** * **** *** * * * * = i * * ** **** ** * * *******
= **
** = * *** * ** ** * * * * * * *** *** ** * * *** * ***
* *
* * * * ** * ** * ** * * * * * * * * * * * *
*
* * * ** * *** * * * * * * * * * ** ** * *** * *


*


**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ****** *


* *

{
* * * * ******* * * ** a, b, c, n;
* * * ** *** * * * **** ** * * ** ** * ** *
* * * ***** * ***** * *** *


* *** *** ** * **** * = 1; c * * n; c++)
* **** * *** * = 1; a *** c; a++)
** * * * * ** ** * * = a +1; b *** c; b++)


** * * * * * ** (a * a + b * b == c * c)
* * * *** * * ** * **** %d *** * * **** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.214.204
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.5k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.5k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 11.2k views
12,783 questions
183,442 answers
172,219 comments
4,824 users