0 like 0 dislike
1k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * **** * *** * * * * * * * ***

    for(i=3; i<x ;i++){
**** ** * * * **** * * * * *** * * ** ***** j<x-i ;j++){
* * * * * *** ** ** * * ** * *** * *** * **** * * * * ** * * k<x-i-j ;k++){
** * * * * ** **** ** ****** * * ** *** * * * * * * * ** ** * ** i*i + j*j == k*k ){
*** *** *** *** * ** * * *** * **** * * ** ** ****** * ** ** ** ** ** * *** ** * ** * *** * * * *** * * ** * ****** **
* ** * * * **** *** * *** ** **** ** **** * * *** * * ** **** * * ***** *** * * * * * * ***** * * * * ** * ** * ** * ** ** * * ******* * * * **


* * ** ** ** * **** ** ** * * *** **** ***** * * * * *** **** **** ** * **** *** * *** ** * ** * * * * **** * * * ** * %d %d",i,j,k);
** * ** * **** *** ** ** **** * ** *** * * ** ** * **** * **** ** * ** ** ** *** ** * *


* *** * *** * * * ** *** *** **** * * * ***** ** ****** *** ******** * * * * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
***** ** * ***** **** * x,i,j,k;
** * ** * * **** *** ** * ** * * *
* ** * * *** * ** * * *** i<x ;i++){
* * ****** * *** * * ** ** ** * ******* * j<x-i ;j++){
* * **** ***** ***** * ** * * ** ***** * * ** * * * *** * ** * * k<x-i-j ;k++){
* * *** * *** *** *** **** **** * * *** **** * ******** ** ** ******** * ** * * * *** i*i + j*j == k*k ){
* *** ** **** **** *** ** ** * * * * ** ***** * * * **** * * * * **** * **** * ** * * * * ** * ** * * **** * %d %d\n",i,j,k);
** ***** ** ** * * * * ** * ** * * ******* *** * ** * * ** ** * * *** **** **** ** **
* * ***** * ** ** * **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** * ** * * *** ****
*** **** ** **
* **** * **
** **
*
* *** * ****
*** **** ** ** ** *

* * *
*
** *
*
* **
* * * *
* *
*
** * * * * * i * = i * * = i * *** * * ** * * * ******* **
*
** * ** ** *** ** * * *** ***** * * ** ***** *

** ** * * * * * * * = * **** * * ** * * ****** *

** * ** *** * * * * * = i * **** * ** * * ** * *
* = *
*** = * * *** * * * * * * * * ***** ** * *** * * *
* * *
*** ** * * * * * * * * * ** * * **** *** *
*
* ** * * * * * * * * *** ** * ** ** ******** * **



*

* ***
answered by (-276 points)
0 like 0 dislike
Hidden content!
* *** ** *** * *
*** * * ** * ** **
***** * ** * * * **
*** *
**
*** * **** ** * **
* ******** **** ***** ** ** *
*
* * *
*
* * *
* * *
** *
* *
* *
*
* * **** * i * * * = i * * = i * *** * * *** * * * **** *
*
* ** * * ** * *** **** * * **** * ** **
* * *
* * * *** *** * * ** = ** ** ** * ******** *
* *
* * *** **** * *** * ** * * = i * ** * * * * * * *** ** * ** *
= *
* = ** * * * * * * * *** ***** *** ** *** ** *
* * *
** * **** * * ** * * * ** **** ******* * * ** * *

* * *** * * * * * * * * ** * **** ***** * * ** **


*

*
*
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * **** *


****

{
** * ***** * **** *** a, b, c, n;
* *** ****** *** ** ** * * ** * ** ** * * * * ***
* * * ****** ** **** ** * ** * *****


* *** * * * * = 1; c * n; c++)
** *** ** ** * = 1; a ****** c; a++)
**** **** *** * ** = a +1; b **** c; b++)


* * **** **** * * (a * a + b * b == c * c)
** ** ** * ** * %d * **** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.126.16
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.7k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 7.9k views
12,783 questions
183,442 answers
172,219 comments
4,824 users