0 like 0 dislike
1.7k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.7k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * * ** *** ** ***** * ** *** *** ** * **

    for(i=3; i<x ;i++){
** * * * *** ** *** * *** * * **** * ** * ** ** j<x-i ;j++){
** * * * * * ** * * *** *** ** * * * **** **** * ** ** * ** k<x-i-j ;k++){
** ** ** *********** * * *** ** * * ******** ** ** *** **** * * **** ** **** **** i*i + j*j == k*k ){
* * *** ** * **** * * * * *** * * * * ***** ***** * * * * * ** * * * * * * ** * * ** ** ** *
****** * ** * * ** * * * * ** * * ** * * * ******* * ** ** * * **** ** * * * **** * *** * * ** * * **** *** * * * * ** * **** * * * **


* * * *** ** ** ** * ****** ** * ** * * * *** ** ** **** * ** ** * * * * ** ****** *** ** * **** * ** %d %d",i,j,k);
** * ** **** ** * * * *** ** ** ****** **** *** ** ** ** * ** * * *** ** * * ** * * ** *** *


** ** * * ** ** ** * *** * ***** **** * *** **** * * *** * * * *** ** *** * ** ***



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** * * * x,i,j,k;
* * * **** * ** * ***** * * * * * *** * *** *
* * * * ** ** * * * ** i<x ;i++){
** *** *** *** *** * * * * ***** * * * ** j<x-i ;j++){
* * *** ** ******** ***** * * * * ** * ** * * * * * k<x-i-j ;k++){
* ** * * ** ** * * * * *** ** ** * * * **** ***** ** *** * ** * ** **** **** * *** i*i + j*j == k*k ){
* **** ** * **** ** * ** * ** ** * * ** * ** ** * ***** * ** ** **** *** ** * * * ***** ** * * * %d %d\n",i,j,k);
* * ** ** * * ***** * * *********** * * ** * **** **** ** *** * ** **** ** ****** * *
**** ** * **** ** ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* ** ** * *** **** *
* ** ** * * ** *
** **** * *
* ** **
*
** ** * * ** ** **
** * * ** * *** ****

* *
* * *
* **
* * *
*
* *
* * *

** * * * ** * * ** i * * * = i * = i * * * * * * ** *
* *
* * ** * *** * * * * * ** *** * * * * *** * * ***
** * *
*** * * * * * ** = * * ******* * ** ***
*
*** * * * * * * *** * * * = i * **** * * **** * ***
=
* = ** * * * * * * * **** ** ** * * ** *** ***** **
*
* * * *** * ** * ** * * ** * ** * **** * *** **
**
* * * *** ** * * * * * * * * * ** * ** * *** *** * **
*




* ** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** * ** *
********* * *
* * * * ** *
* *

** ** *
* * * **** * * * * * * ***

** **
* ***
*
** * *
* * * *
*
* *

* *** * * * ** * * i * = i * * = i * * ****** ** ** * * * *
* * **
* * ** * * * * * * * * * * * ** * **** * ** * ** * * *
*
* * * * * * ** * * *** = ** ** ** * ** * * *
** * *
** * * * ** * * * * * ** = i * **** * *** ** * ** *** ** ***
* = **
** = * * ** ** ** * ** ** * *** * * * **** *******
* **
**** * ****** * **** * * * * * ** ** * * ****
* *
* * * * * * ** * * * * * * * * * ** **** ** ** * * ** * * * * **



*
*
*** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ** * ****** ***


**

{
********* ** * * * a, b, c, n;
*** * * * ** * * *** * * * * * * ***
** ** ***** *** **** * *** **** *** *** **


**** * * ** = 1; c *** n; c++)
* ** **** *** * * = 1; a ** * c; a++)
**** ** * ** * *** * = a +1; b *** c; b++)


*** * ** **** (a * a + b * b == c * c)
* ** *** *** * ***** * * %d ** ***



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:162.159.115.32
©2016-2026

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 12.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users