0 like 0 dislike
1k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** ** ***** * ** * * * ** ** ** **

    for(i=3; i<x ;i++){
** ** ***** *** * ** * * * ** *** ** * * * j<x-i ;j++){
* **** * * **** **** ** * * ** ***** *** *** * * ** * * *** k<x-i-j ;k++){
* ** *** **** ** **** *** * ** * * * * ****** **** * ** ** * ***** *** ** ****** * ** i*i + j*j == k*k ){
*** * * * * * *** * ** * * * * **** * * * * * * * * * * * ***** * ** * * ** ** * * * * * * * * ** * * **
** *** ** * ** *** * ** * ** *** *** * * *** ** **** * * * ***** * ****** * * ** ** * * * * * ** * ** * * * ** ******* ** ** * * ***


* * * * *** *** * ** * * **** * **** * * * * ** * * *** ** ** * ** * ** *** * ** * *** ** * * %d %d",i,j,k);
* * *** ** ** * * ** * * * * ** ** ** * **** *** * ** * * **** * * ** * *** * * **** ** ** * * **** **** * *


* ** ******** * * ** * * ** ******** *** * * * *** *** ** ***** ** * ** * * * * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ** * * * ** * **** * *** x,i,j,k;
* *** ***** * **** * * * **** * **** ***
** * ** * * *** *** i<x ;i++){
* ** **** * ****** ******* * ** * * * *** * j<x-i ;j++){
** * * ** * *** *** * ******** * ******** * *** * *** * ** ** ** ** *** ** k<x-i-j ;k++){
** *********** ** *** * * ** * ** ** *** ** * * * * * ** * ** * * * * * * ** * ** ** * ** i*i + j*j == k*k ){
** **** ** * ** * * * * * * * ** ** *** * * ** * * ** * * * ** * * * ** ** **** * * * ** ** * ** ******* * *** * %d %d\n",i,j,k);
*** ** **** ****** ** ** **** ** * * ****** ***** * *** * * ** * * ** ** ** * ***
* ******** * * * *** *** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * * ** ** ******
* * * * * **
* **** ***
** ** **

*** ** * * *
** *** * ********* *


* * *
* *
* * * *
* * *
** *
* * * *
*
*** * * **** * ** * * i * ** = i * * = i * ** * ** * * ** * *
*
* * * ****** * * * * * ** * * ** * ***** *
*
** * * ** **** * * = ***** * * * * * * * **** **
* *
* * * *** * * * * * = i * *** ***** ** * ** * * * *
=
* *** = *** * ** * * ******* ** * **
*
* * ** ** * ** **** * ** * ** *** ** * *** *** ** ***
* *
* * * * * * * * * * * * **** *** * ** * * ***** *


*


*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * ** * *
***** * * **
** *** ** * ***** **
* *

* ** ** ** * * * *
** * * ** * *** *
*
*
* *
* *
* * *
* * *
* *
* * *

* ** * * * * * ** * i * = i * = i * * * ** * ** * ** * ** *
* * **
* * *** *** * * * ** * * * ** * * ** * *** * ** *
* *
** ** * * * ** * * * * * ** = *** * * * ** **** * * **** *
* *
** ** * * ** * ** * * * ** = i * * ** ** **
* =
*** = * * * * * * * * * * *** * * * ** **** * * *
* *
*** * * * ** * * * * ** * *** ** ** ** ** ** * *
*
** ***** ** * * * * * *** * * ** **** * * *** ***

*

*

* **
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** **** **** ****


* *

{
***** *** * ** *** * a, b, c, n;
** ***** * * ******* * * ** ** ***
** ** * ** * * ** ** ** *** ** * *


* * ************** * * = 1; c ** n; c++)
*** * * ** * * *** * ** = 1; a **** c; a++)
* * *** **** = a +1; b * * c; b++)


** * ** * * ** ** * * (a * a + b * b == c * c)
* ***** * * *** * * * * %d ***** * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.17.25
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.7k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 7.9k views
12,783 questions
183,442 answers
172,219 comments
4,824 users