0 like 0 dislike
1.7k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.7k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
**** * * ** * *** *** * * *** * **

    for(i=3; i<x ;i++){
* ** ** **** ****** *** ** * **** * *** ***** ** * ***** j<x-i ;j++){
* **** * * **** ** ** ****** ** * **** * *** * * *** * * ***** ** * ** k<x-i-j ;k++){
* ***** ** ***** ** * * ** ** * **** * * * ** * ***** * *** * ** ** * *** ** * ** i*i + j*j == k*k ){
* ** * * ** * ** * * * *** * * * **** * ** * *** ** ** *** * *************** * ** ** * ** ** *** * * ** * * ** * * * ** *
**** *** * * * * * * * ****** * ** ** * ** *** ** ** * ** ** * * ** ** ** * * ** * ***** * * * *** * ** * * *** **** * *** *** *


** ** ** * *** * ** **** * * * **** ** * *** ***** ** * *** * * * **** * * ** ********** * * * ** * ******** * %d %d",i,j,k);
* *** * * * *** * * ** ** *** * * ** **** ** ** * * ********** * ** ***** * **** * * **


*** ** * ** * * * * ** * **** ** * * ** * **** *** * ** *** ** * * **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ****** **** * * * * * x,i,j,k;
** ** *** ******** * *** ** *** * * *** ******
* *** * * ** * *** * **** i<x ;i++){
* * ** ** * * * * ********* ******** ** *** * * ** j<x-i ;j++){
* ** *** * ** **** * * * ** **** ** ** * ** * *** * *** *** * k<x-i-j ;k++){
* ** * * ***** ** ** * * *** * * * * *** *** ** * *** * * * **** * ******* * ** i*i + j*j == k*k ){
* *** *** * ** *** * ** *** * * *** * **** **** * * * * * * * *** *** * ** * * ** * * * ** **** * * *** * * * * * %d %d\n",i,j,k);
** ** * * * ** ** * *** ** **** ** *** * * ** ** * * * *** * ***** ** * *** * *** * ** *
* ** **** * * ******



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * * *
*** * * * ** *** * *
** ** ** ** * *** *
* ** *
*
* ** ** * ** **
***** *** ** ** * **

** * *
* * *
* * * *
* * *
* * * *
* *
* * *

** * * * * ** ** * i * * = i * ** = i * * * * * **********

** ** * * * * * * * ** * * * ** *** ** *** * * * ** ***
*
* * * ** * * * * * * * = * * * ** * ** ** * **
*
* * *** * * * * * * = i * ***** *** ** ** * * ** **
* =
* = * *** * * * * * * ******* * **** * ** ******* **

* *** * * ** *** * * * * * ***** ** * ** ** **
*
* * * * * * * * * *** *** ** * ** *** *** *
*




** * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** ****** *
* **** * * *** **
* * ** * *
* *****
*
** ** **** ***
* * * * ** * * * ***

* * *
*
* *
*
* *
* *
* **
*
* * * * * i * * = i * *** = i * * * ** ** * ** * *
* *
* ** * *** * * ** * ** * * ** ** * ***
* * **
* ** * ** ** * = * * * * * *** * * *** * *
* *
** * * * * ** ** ** ** * * * * = i * * ** * ** * ** ** * *
= *
** * = * **** ** * * * * * * ** * * ** **
*
* * *** *** ** * **** * * * * ** * * * ** * * * ** * * **

* * * ** * * * *** * * **** ** * ** * * **** *** ****




*
*
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* *** *** *


**

{
** **** * ****** * a, b, c, n;
*** * *** * **** ** * *** ** * * * * ***
**** * *** * * * ** * *** ***** *** * ***


* *** ** ****** *** = 1; c * * * n; c++)
* * **** * **** *** = 1; a *** c; a++)
****** * * ** * = a +1; b **** c; b++)


**** ***** ***** (a * a + b * b == c * c)
* ** * * *** * * * * * * %d * * * * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:162.159.115.31
©2016-2026

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 12.8k views
12,783 questions
183,442 answers
172,219 comments
4,824 users