0 like 0 dislike
1.6k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.6k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
*** ******** *** **** **** * ***** ** ***

    for(i=3; i<x ;i++){
* * ** * *** * * ******* * ***** * ** * j<x-i ;j++){
****** * * * * * ** * ** ** ****** ******* * * * * ** * ***** ** * * ** k<x-i-j ;k++){
* **** *** **** ** * *** * **** * ** * * ***** * ** * ** ***** * *** ** * ** ** *** *** i*i + j*j == k*k ){
* * * * ** * ***** * *** * **** * *********** *** **** * *** ** ** **** **** *** ** * ***** *** *** * ****** * * * ***
*** * ** * ** * ***** * **** *** ** ** ** * * *** * ** * * * ****** ** * **** * * ** * ** *** *** * *** * ** * * ** ** ** *


** ** * * * **** * * * * ** * ******** * ** * ** *** * * *** * * ** ******* **** * ** * ** **** * %d %d",i,j,k);
* *** ** ** ** *** * * ** * *** **** ** * * * **** * * *** *** * * **** * **** *** ****** ***** **


* **** ** * ** * ** **** ** ** * * * * **** ** ** * ** * * * *** *** ***** * * * ***



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
*** ** ** * ****** * * x,i,j,k;
** * * * ** * *** * * * ****** * * * * ***
** * ** * ** * ** **** i<x ;i++){
** **** ** * * ** * ****** * ** * * * * * *** * j<x-i ;j++){
**** ** * * **** *** *** * * ** * * * * ** * ** *** ** ** ** * **** * * k<x-i-j ;k++){
** * * **** ** * * * *** ***** *** * * *** *** * ** *** * ** *** * *** **** * * * * * i*i + j*j == k*k ){
* ** * *** ** ** ** **** ** **** * ******* * * *** * * * ** *** *** * *** * *** ** * *** * ** **** ***** ** * %d %d\n",i,j,k);
** * * * * ** * ** **** *** **** * ***** * ***** * * *** * * *** *** ** * * *** *
* ***** ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** * ** * ** *
** ** * * **** * *
** * * * * ** ***
* * ** *

* * * *** * *
* ***** ***** * ****** * **

** * *
* * * * *
* *
*
* * *
** * *
*

** * * *** * **** * i * = i * * = i * ** ** ** * ** *** *
* **
***** * * * * * * * ** * * * * * * **** * ** *** *
*
* ** * * ** * * ** * * * = * **** **** ** * * * * **
* *
* ** * * ** * * * * * = i * ** * * *** * * * ** * * **
* =
* = * ****** ** * * * ** * ** * ** * *** * ** ** **
* *
** ** * * *** ** * *** * **

** * ** * * * * * ** ** ************ * ** * * * ** *
*





answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** * ** ** *
* *** * ** ** * * *
* ** ** * * * ** *
* *

** ** *
* * ** * * ** * * * **

*
* * *
**
* * *
* * **
* *
* * ***
*
* ** * * * * i * = i * * = i * **** * * * ** * ******

* * * * * * * * *** ** ** * * * *** **
* *
* * * * * **** ** * * * * = * * ****** ** ** *******

* * * * * * * ** = i * * ** * ** ** * * ** **** ****
* = *
** * = * * ** * * * ** * * ** * **** ** **** **
* *
*** * * * * * * * * * * * ** **** * * ***
*
*** * ** * * ** * * * * * * **** * * ***** *

*
*

*
* * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** * ** * **


* *

{
** ** * *** **** ** a, b, c, n;
** ****** * *** ***** ** * *** * **** * ***
* * * *** ** * * * ** **** * * ** *


* ** * ** ** * * = 1; c ** n; c++)
* ** ** ** * * = 1; a ** * c; a++)
** ******** ***** ** = a +1; b * c; b++)


** * * * *** ** (a * a + b * b == c * c)
** ***** * *** ***** %d ** ***** * * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.7.59
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.7k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.7k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 12k views
12,783 questions
183,442 answers
172,219 comments
4,824 users