0 like 0 dislike
1.2k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.2k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** ** * *** * * *** * * ** * ** * * * ***

    for(i=3; i<x ;i++){
* ** ** * * * * * * ** * * * ** ** ****** ** j<x-i ;j++){
*** ******* ***** *** * * ****** * ** *** *** * ** * * ** ****** k<x-i-j ;k++){
* * * ***** * * * * * * * **** ****** * * * *** *** ** * *** * * * ** *** * i*i + j*j == k*k ){
* *** *** * ** ** * ** * * **** * ** * * ** * * **** * * * ** * * * * **** ** *** ** **** ** * ** *** * * * *
*** * *** ** ** *** ** * * * **** * * * *** ** ** **** ** * ** * ***** * * * * * ** * ** ******* **** ******* * * ** ** * * * ** * *


** ** * *** * * * ** * *** * * *** ** * *** * ** * *** * ** *** * * * *** ** *** **** ** *** ** ** ** ** ** ** * ** %d %d",i,j,k);
* ** *** **** * ** *** ** **** * ** * ***** ** **** * ** ** ** * * ** * * * * ****** ****** ** *


* * **** *** * * * * ***** * * ** ** * * * * * * *** ** * **** **** ** * ** *** ****



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * * * ** **** **** * x,i,j,k;
** * ******* *** *** * ****** * ** * * ******* ***
** * * * *** * * * * ** * i<x ;i++){
* * **** ** * ** * **** *** * ******** ** ** * *** j<x-i ;j++){
* ** * ** * * ** *** * ** * * * ** *** * **** ** ** * ** * ****** * k<x-i-j ;k++){
** * *** *** * * ** ** ** ** *** ** * * * * *********** ** * * * *** * i*i + j*j == k*k ){
*** *** *** * ** ** * *** * * *** ** * **** **** ** * ** **** * * * * *** **** * *** **** * *** * **** * * *** * ** * %d %d\n",i,j,k);
***** * *** ** *** * * * * **** * * * * ******* ** * * * *** * * * ** ** * ** ***
**** ** ** * * * * *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* *** ********** * * **
** *** * ** * *
** * * * *
*** *
*
* * *** * * **
* *** ** ** *

* *
** *

* *
* *

*

* * *** ** * * * i * = i * * = i * *** ** ** ** ** **
* *
* * * ** ** * * * * ** * * * * *** * ** * * ** * ***
*
** * * *** * ** * * * * = * ** *** *** * * * ** ***
* *
*** ** * * * * * * * * ** = i * ** ** * * ** * ** **
= *
* = * * ****** ** ** * * * * ** ** * ** *****
** *
*** * ** * * * ** * * * * *** * ** ** * *
*
* ** *** * * * * * * * ** ***** ** ** ***** * **

*



** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** ****
**** * * *** * * *
*** ** * * *
* * ***
**
* ** * **** ***
* **** * ** ** *** **

* * *
* * *
* **
** * *
*
* * *
* *

* ** ** * ** ** ** *** * i * = i * * = i * * ** * * * **** * *
*
* * * * * * * * * * * ** ** ** ** * *
*
** * * **** * * * * * * * * = * * * * * * * * **** *******
* *
* ** * * * * * * = i * *** * * **** * ** ** ***
** =
*** = * *** * * ** * * * *** * * * * * ** * **
* *
**** * * * * * * **** * * * * * * ***** *** * **** ***
* *
* * *** * * * * * * * ** ** * ** * * ** *** *
*
*



*
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** *** *


* *

{
* * *** * * * ** * * a, b, c, n;
* * ** ** * * *** *** ** ** ****** *** * * * *
* ** * * * ** ** * * * * * ** *


* * * * * *** ** = 1; c * **** n; c++)
** *** **** * = 1; a * *** c; a++)
* * * ** * ** = a +1; b * c; b++)


**** * *** ** * (a * a + b * b == c * c)
**** * * ** ***** * * ********* *** %d * * ** * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.206
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 9.5k views
12,783 questions
183,442 answers
172,219 comments
4,824 users