0 like 0 dislike
1.3k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.3k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * * * ** *** ** * ** ** * * ** * * ***

    for(i=3; i<x ;i++){
* *** * ** ** ** * * * * ** ** *** * * * * * j<x-i ;j++){
* * * ** * * ** * * **** * *** * * * * * ** ** * *** k<x-i-j ;k++){
* * *** * ******* ** ** ** * **** * * * * ** ** * *** ** ** * * *** * ** ** * * ** ** i*i + j*j == k*k ){
* * * * ** ********* ** ** *** ** * **** * ** *** **** **** ** * * ** * * *** ** ** *** * * * ***
* ** * * * *** **** * **** * * * * * ** *** * ****** * ** *** ************ **** ***** * * * ** * * * * * ** * ** ** *** * ** ** ** * * **** * * ** **


*** *** *** ** ** * * ****** *** * * ******** ***** * * * ** ** **** ** **** * * ***** ** * ** *** * * * * * * * *** * * **** * %d %d",i,j,k);
* *** * * * ** * *** ** *** * * * * ************ * * *** * *** * ** **** ** ** ************ * * * * * ** ** ** * * ** *


* ** * *** * ** **** ***** **** ** *** ** ** * * * * * * *** ** * *** ** * ** * **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* ** * ** ** ** ** ** x,i,j,k;
* *** * * ** * * * ** * **** ** *
* * ******** * *** * ** ** * ** i<x ;i++){
**** ** *** *** * * * * * ** * * * * ** ** * *** * j<x-i ;j++){
** * **** * * *** *** *** * ******* * * * ** * * ** * **** * k<x-i-j ;k++){
**** *** * * * *** ** * ** * * * ** * ** * ** * * * ***** ******* **** ** * ** i*i + j*j == k*k ){
* ***** ********* *** ** * ** ******* ** *** * * * ** * *** *** * * ** ** *** **** * * ****** * * * ** ** * * ** * * ** * %d %d\n",i,j,k);
* * * * * * * ** * ** ***** * ** *** ** ** * ** ** ** **** * * *** * * ** * * **
**** *** * * ** ** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* *** * * ** * ** *
* *** * ***
*** ** * * ***
* ** * **

** * * * *
*** * ** ** ** *

* * *
* * **
* * * *
* * **
* **

* * *

* * * * * ** * i * ** = i * * = i * ** ** * * **** * *
*
*** * **** * * * * * * * ** * * * * * ***
** **
* * * * * ** * * * * * = ** *** * ** * **

** * *** * * ** ** * * * *** = i * * ** **** * ***** ** ***
= *
* * = * * ** * ** * ** * ** * * ** * ** * **** **

* * * ** * * ** * ** * * * * * * ** ** * * *
** *
* * * *** * * * * * * *** * *** * * * * * *** *


*


*** * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** * * ** **** *
* * *** *** *
* ***** *** * *** **
* * ** * **

* * *** * * **
* * ** * *** * *
*
* **
* * * *
* * * *
* **
* * **
* * *
* *

*** * *** *** ** * i * * = i * * = i * *** ** * ** * * *
* *
* * * ** * ** ** * * * * * * * * * **** * * * * * **
* *
* * * ** * * ** * = * ***** *** * * *** ** * *
* *
** * * *** * ** * *** * = i * ** *** * * ***********
* =
* = * ** ** * * * * * * * * ****** **** * *** * * *
**
* * * * * * * * * * *** ** * * * ** * * *
** *
** * ** * * * * * * * * *** **** * ** * * ** *** ** **
*
*
*
*

** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** *** * **


* ***

{
******* * a, b, c, n;
* *** ** * ** * ** *** * *** * ****** * *
** ** * **** * * **** ****** * * *


*** ** * * **** * ** = 1; c * * n; c++)
* ***** * ** ** *** ** = 1; a * ** c; a++)
* * * * ** * *** * * = a +1; b ***** c; b++)


** *** *** ** * *** (a * a + b * b == c * c)
** * **** * * ** * * **** %d ** ** * * **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.59.82
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 10.3k views
12,783 questions
183,442 answers
172,219 comments
4,824 users