0 like 0 dislike
1.4k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.4k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* * * ** ** * ****** * *** ** ***** * ***** *

    for(i=3; i<x ;i++){
*** ***** ** * * * ** * ** ** ** * ** ** * * ** ** j<x-i ;j++){
*********** ** *** ****** * *** **** **** * * * * * ****** * * * k<x-i-j ;k++){
* ** **** * * * ** * ****** * * * * * * ** * ** * ** ** ** ** ** *** *** i*i + j*j == k*k ){
* * ** ** ** * * ** * * * * ** ** * *** ** * *** ** ******** *** **** * * * * * * ** * * * * ** * * ****
* * * * ***** ** *** * ******* * * ** * * ** ***** * *** * * * * ***** * ** ** ** * * ** * *** * * *** * * ** * ** *** ** * * * ** * * * * * *


*** * * *** * ** * ** * *** ** *** *** *** * **** * ** ** * **** * ***** * * ** ***** ** ** ** ** * ***** ** * * %d %d",i,j,k);
** * * * ******** * ** *** *** **** ** ** *** * * * **** * **** * ****** ** * *** * * *


* **** ** * * * * * *** * * ***** ** ** * *** * * ** * ** * ** * * * ** *** * ** ** **



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
****** * * **** *** * x,i,j,k;
** * * * **** ** * * ** * **** * **** * ** *
** * * ***** * *** * ** i<x ;i++){
**** * *** ** * ** * * * * * * *** * * * j<x-i ;j++){
** * **** * *** ** * * * *** ** * * ** * ** **** * **** * k<x-i-j ;k++){
* *** *** ** *** ** * * ** ** ** * * ****** * ** * *** ** * ** * * ** * i*i + j*j == k*k ){
*** ** * * ** *** ** * * **** * * * *** ** * *** *** * * * ** * * * ** ***** *** ** * * %d %d\n",i,j,k);
* ** ** ** ***** * * * ** * * *** * ***** * * ***** * **** * * ** * ** ** **
* * * ******** * * * *** ***



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* * **** * * *
* ** * **** * *
*** * ***** *** * *
* **** *

** * ******
* *** ** * * **

* * *
* * * **
* *
* * *
* *
* * *
** * **

** * * * * * * i * * = i * = i * * ** * * * ** **
** *
** * * * *** * * * * * * ***** * * ** * ** **
**
* ** * ***** ** *** * = ** ** * * ** * ** *** ***
* * *
** ** ** * * * * = i * **** ** * ** * ** * * *
=
** = ** * ** ** ** * * * ** * **** * ** * *** ** *** *
* *
* * * ** * * ** * * * * * **** * * * * ** ** ** **
*
* * * * * * * ** * ** * * ***** ****** * **** ** * *
*




** *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** ** ******* ** *
**** * *** *
** ** ** ** ** *
** ** *
*
**** * ** *****
**** ******* ** * *

*
* *
** *
* *

* * * *
* * * * *

* * * * * i * = i * * = i * * *** ** * ** * * * **
* *
**** * *** * ** * * * ** ** * **** * *** * *
**
* * ** * * * * *** = * * *** ** * * ***
* * *
** * ** * ** ** * * * = i * ** *** *** * ** *** *
* = **
* * = ** * ** * ** * * * ******** *** * * *** **
*
* * ** * ** ** * * * * * ** * *** ** * * * ** *

* *** * * * * * * * ** * * * * * * * ** ** ** ** ** **





*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** ** ** **


**

{
* ***** ** *** ** **** a, b, c, n;
* * ** * * ** * *** **** * ** ** *** *** ***** *
** **** ***** ** * * ** ** *


* ** * * ***** * = 1; c * n; c++)
* *** *** ** ** *** = 1; a * * * c; a++)
* *** ** ** * = a +1; b c; b++)


*** * *** *** (a * a + b * b == c * c)
* * ** * * ** * * * %d * ** ** *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:108.162.241.33
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.5k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.5k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 11.3k views
12,783 questions
183,442 answers
172,219 comments
4,824 users