0 like 0 dislike
1.3k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.3k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** * ** ** * * **** ** *** * ** *** *** * * **

    for(i=3; i<x ;i++){
*** * * ** * ** ** *** ** * * ** ** * * * ** * ** j<x-i ;j++){
**** *** * * ** ** * ** ** ** * * *** ** ***** ** *** * ** ***** * k<x-i-j ;k++){
* **** * * * * ** * ** * ** * * * * * *** * * * ********* * * * * ** * * ***** ** i*i + j*j == k*k ){
* * * * * * * * ***** * ** * * *** *** ** * ** * * * ******** ****** **** *** ****** *** ******* * ** * * * * **** *
** ** *** *** * * ***** * * * ** * ** * * *** **** * * * * *** * * * * ***** **** *** *** ** * * **** ** ****** ** * ** * ** * * * * * *


** ** * * ** *** * * *** * ** * * * * * * ** * * * *** * **** ** ** ***** ***** * **** ** ** *** *** * * ** %d %d",i,j,k);
* ** * * *** *** * * * * * * * * **** * * **** *** * *** ** * ***** ***** * * * *** * * *** * * * **** * **


*** * * * *** * *** * ** ** ** * **** * * *** * *** *** *** ** * * ** * * ** * * ******* *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * ** * * x,i,j,k;
** * * *** ** ** * * ** ** *** ****** ****
** ***** * ** * ***** i<x ;i++){
* * * * * * * *** * ** ** * * ** ** j<x-i ;j++){
* * ******* ** * ***** ************ * * ** *** ***** ** **** * ** * *** * k<x-i-j ;k++){
* ***** * * ***** * * ** *** ** * * ** * **** *** *** * * ** ** ** * * * * ** * **** * * **** i*i + j*j == k*k ){
** ****** * **** ** ******* * * * * ** * * * * * ****** ** ** *** * * ** ** ** * **** **** * *** ******* * ** * * %d %d\n",i,j,k);
* * ** * * ****** ** ***** ** **** * * ******* * *** **** ** ** * ****
* ** * * ** * * *** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** * *** *
***** ** ******** ** *
*** * * * **
** * *

* * * *
* * * *** *** * * ***

* * * **
* * *
* *

** *
* **
* * * *

* * * *** * *** * i * * = i * = i * * * ** * *** * * * * ****
*
* * *** ** * * * * *** * * * ** * * * ** *** *
*
* * * *** * * ** **** * * * * * = * *** *** * * * ** * ** ***
* *
* * * **** *** * * * * * = i * ** * ** * * * * ** * *
= *
**** = * *** *** * * * * *** * * ** * ** **
*
* *** **** * * * * * * * *** * * * **** * * * *
** *
* * ** **** * * * * * ** * * * **** ** * * * ** * ** * * *



*

* *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* *** * * ** * * *
***** **** * * ****
***** *** **
* * * *
*
* * * * * * *** * *
* * * *** * * *

*
* * *
* * * *
* *
** * *

*

* * * ** *** * i * ** = i * * = i * *** * * * * ** **** * *
* *
** * ** * * ** * * * ** *** ** * * * * **
*
*** ** ** * * * * = * *** ** * * * * ** * ** *
* *
* * * * * * * * ** = i * * * * * * * * ** * * *
* = **
* = * * * * * * * * ** **** ** * ** * ***
*
** * *** * * * ** * * ** ** * * * * * ****
*
** * ** * * * * * * * * * * ** * * **** * * ** * ** * * ***


*


* * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
*** *** *


**

{
** * ** ** * ** * a, b, c, n;
* * * * *** **** * ** * **** * **
** ** * *** *** * ** *** *** * **


**** ** *** * *** * = 1; c * n; c++)
* *** * * ** * * * = 1; a * **** c; a++)
* ** * * ***** = a +1; b **** c; b++)


*** * * * * (a * a + b * b == c * c)
**** *** * ** ** * * ** ** * %d ***** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.130.52
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.3k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 10.3k views
12,783 questions
183,442 answers
172,219 comments
4,824 users