0 like 0 dislike
1k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* ** *** ** * * ** ** * * *** ** ** * **

    for(i=3; i<x ;i++){
******* ** * * * * ** * * ******* *** * ** j<x-i ;j++){
*** * * ****** **** * ** * * * ** * * **** * * ** * * **** k<x-i-j ;k++){
** * * * *** *** ******* * * *** ** * * ** * * * ** * * ** * **** ** *** * * * ** * * i*i + j*j == k*k ){
* * * *** * * **** ** ** * * **** * ** ** * **** **** * ** ** *** * * * * * ** * * * * *
**** **** ** ** * * * * * * * * * * *** ** * **** * * * *** ***** * * * * * * ** * ****** * *** * * * * * * * *** * * *** * ** ****


* ** ****** * ** **** *** *** * * ** **** * * ****** * * * * *** *** * * * * * **** * *** * * ** * * * * **** %d %d",i,j,k);
* ****** ** * * ** ***** *** * * ******* *** * ** ** ** * * * ******* * *** * * ** *


*** ** * *** ** *** **** **** ** * ** **** * *** * ** *** *** * * * * * ** * **** *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
* * **** * * * **** * * ** x,i,j,k;
*** ** * ** *** * ** * * * * *** ***
* ** * * **** *** * * * i<x ;i++){
***** * * ** **** * *** *** * ** * *** * j<x-i ;j++){
** ** * * * * * * ** ** ** ** * ** * * * * * * * * ***** * ** * k<x-i-j ;k++){
* * * ** * * * **** ** * * * * *** * *** ***** **** ********* * ***** * * **** * *** i*i + j*j == k*k ){
****** ** *** **** ** ** * ** ** *** ** ** ** **** * ***** * **** ** **** * * * * * * ** ******** ***** ** **** %d %d\n",i,j,k);
* * * * ***** ** ** ** * ** *** ** * ******* *** * ****** ** ** * * ** * **** *
* **** **** ***** *



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
* **** * *** *
** ** * * * *******
** ** *** ** * ***
* ***

**** * * * *
* ** ** *** *
*
* **
* * *
* **
*
* **

** * * *
*
** * * **** * * ** i * * = i * * = i * * *** * * * ***** *
*
* ** ** * * * *** * * * ** * *** * **
* * *
* * * * * ** * * * * * = * ****** ** * * * * ** * * *
*
** * ***** * ** * * * * * * = i * * * * ** ** ******** **
=
* = ** * *** * * ** * * * *** *** **** ** ***
** * *
** ** * ** * * * * * * * ****** * ** * *** *
* * *
**** *** *** * * * * * **** * * * * * * *





* * *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** ** * **
*** ****** **
** *** *** ****
* *
*
** * * * * * *
* * * ** ** * **** ** * **
*
* * *
* * * * *
** ***
* * * *
* * *
* *
*

** ** *** ** * i * = i * * = i * * * * **** * *** *****
*
* * * * * ** * * * * * *** *** * ******* *** * ** **
*
** * **** * * * * * * = * *** ****** ** * ** *** **
* *
* ** * ** * * * * *** = i * * *** * * * * * ****
* = *
** = * * * ** * * * * * * ******* * * * *** **
** *
** ** ****** * * * * * * * * **** * *** **** * **
* * **
* ** * ** * ** * ** * * * * * * ** *** * * ***

*


*
* **
**
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * *** * **


****

{
* * * ** a, b, c, n;
* ** * ** ** * * ** ** ** *** *** *** * * ***
**** * * ** * * * ** *** **** * *** * *


** * *** **** = 1; c * *** n; c++)
* * * *** ** ** * = 1; a *** * c; a++)
* * * * **** * * * = a +1; b * * c; b++)


* * * *** ** * * (a * a + b * b == c * c)
* * ** * * *** * ** *** %d * * *** * *



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.151
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3.4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.8k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.7k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 7.9k views
12,783 questions
183,442 answers
172,219 comments
4,824 users