0 like 0 dislike
1.2k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.2k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
** ******* * * * *** ** *** * *** *

    for(i=3; i<x ;i++){
************ ** ** * * ** * ** ** * * * * ** j<x-i ;j++){
*** *** ** * *** ** * ** * ** *** * * **** *** ****** ***** ***** k<x-i-j ;k++){
*** * * ** ** * *** * * *** * ** * * ** * ***** ** ** * ** * **** * * * * ** * ****** i*i + j*j == k*k ){
* * **** *** **** *** * * ** ** ******* * * * * * *** * *** * *** ****** * * * * ** * ******** * ** ***
**** * ** *** * *** **** * * * * *** * * *** * * * ** ** ** **** **** * ** * * **** ** ** * ***** ** ** * * * * * *** * ** * **** *


* * ** ** * * * ** ** ** ** * *** * * * * **** *** **** * **** * ** * ** *** *** * ** * * * ***** *** **** ** *** * * * %d %d",i,j,k);
** *** * *** ** ** * ** ** * * **** * ** ** * * * * * ***** * * * ** ** ** **** ** * * * ***** ******** * * ** * *


** *** ***** * * ***** * * * ** * * * * ** **** ** **** * * * * * **** * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
** ** ** ****** x,i,j,k;
* * * * * * * * * ******* * * **** * ** ** **
* * * * * * * *** ** *** i<x ;i++){
**** * ** ** * ** **** *** ** **** j<x-i ;j++){
* ** *** * *** * * * ** *** * * *** *** * * * * * * * *** *** ** * * *** k<x-i-j ;k++){
*** * **** *** ** ** ** * *** ** * * * * * * ** ***** * ** * * ** *** ****** * ***** i*i + j*j == k*k ){
** *** ****** * * ** * * ** *** ** * * *** *** * *** * * ** * * * ** * ** * ** ** * * ***** * * * * * * *** ** **** * %d %d\n",i,j,k);
* * * ** *** * * ***** * *** ** * *** ** ** * * * * * **** * *** ** ****** * ** * * *
* * *** * ** ** ** *** * **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** * * * * ****
* * * * *** ** * **
*** **** * * ** *
* ** **

* ** * ** **** * **
** ** *** *** *** * ***

* * *

*
* *
* **
* * *
* *

* * * **** * i * = i * * = i * * ** * ** * ****** *

*** * ** * * ** * * * * * * * * * ** * * * * **

* * * ** ** * * * * * = ** * * ** ** * ** * ** ****

* * * * * ** * * * * = i * *** * * ** ** * ** *
= **
* = * * ** * * * ** * * * * * * * * ** *
** *
* * * ** * * * * * * ** * * * * ** ** ** ** ** ** ***
* *
* * * * ** * * * * * **** * ***** * ** ***** * *** * **
*
*
*


*** * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* *** ***
* ** *** * ** *
* **** * * *** **** *
* *
*
** * * *** ****
* * * * *** *** *

* * *
* * * **
* *
* * * *

* *
** * *

** * * * ** i * * = i * * = i * ** ** ***** ** *** * *** *
*
* * **** * * * * * * * ***** * * * * * ** * *
*
*** * * * * * * * * * = * ***** * * * ** ** ** *
* *
* * * * *** * * * * * * *** * * = i * **** * *** * * ** ** * *
=
* ** = * * * * ** * * * ***** * * * * ** * * **
**
**** ***** * * * * * ** * * * ***** ***** * ** * *
*
** * ** * * * * * * * * * ** * *** * ** * *


*
*

**
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ** * * ** * ***


***

{
* * * ** a, b, c, n;
** * ** * ** * * * * ** * * * ** * * **
***** * * * ** * * * *** **** ** *


* * * *** * * * = 1; c ** n; c++)
** * * ** ** = 1; a * c; a++)
**** * * *** *** ** = a +1; b *** c; b++)


**** * * ***** * (a * a + b * b == c * c)
* * ***** * * * ** * * * * %d ***** *** ***



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.70.80.20
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 4k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.1k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 9.5k views
12,783 questions
183,442 answers
172,219 comments
4,824 users