0 like 0 dislike
1.7k views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 1.7k views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
*** * *** **** ** * * ** **** ** * *** *

    for(i=3; i<x ;i++){
* ** ** ********* ** * * * * * *** ** * ** * j<x-i ;j++){
** * * ** **** **** * *** * * *** *** * * ** * ** *** *** * *** *** * * * k<x-i-j ;k++){
** ** ** * **** ** ** * ** * ** * * * * ** *** * * * * ** * * ** * *** * *** ** ** ** * i*i + j*j == k*k ){
*** ** * ** * **** * *** *** * * ** *** * ****** ***** ** * ** ** ** * **** * * **** * *** * * *** * ** ** * * *** ** *********
* ** ** **** *** * * * * * * * *** ** * ** **** ** *** * ** * * ** * ** ** ** ******* ** * * ** *** ** ** *** * * * ** * * ** * **


* **** *** * **** * *** * * * ** **** *** * *** ** * * *** * * ** ** * * * ** * * * * *** * ** %d %d",i,j,k);
** ** * *** ** * *** ** * * *** ** * ** * ** * ** *** * * *** **** * * * **** * * * * *** * * ** ** *** * *** * **


* * *** * * ** * *** ** * ***** * * ** * * *** * * **** * * * **** * * * * ** ** ****



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
*** **** ** * * * * x,i,j,k;
* * * ** ** * *** * * * ** * * *** *
*** ** ** ** ** ** ** * ** * i<x ;i++){
** * * **** * * * ** *** ****** ** **** * * * * ** j<x-i ;j++){
* *** * * * * * **** * **** * **** * * *** *** ** * ** ** k<x-i-j ;k++){
**** **** ** * ** ** * ** * * ** ** *** ** * ** ****** * ****** *** ** * * *** * i*i + j*j == k*k ){
** * * ****** * ** ** * *** * ***** * * *** * ** *** * * *** * * * * * ** * * * * **** ** * **** * **** * *** *** * %d %d\n",i,j,k);
* * * ** ** * ** ** ** * * * * *** ** * * ** ** * *** * *** * *** * * *** **** ** *
** *** * * * * * * * ***



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
*** * * ****** * * **
** ** ***** *
* * ** * ** ** ***
* * *
**
** *** ***
* ***** * * * ** *

* * * *
* **
* *
*
* * *
*
* *

* *** * * ** * * i * * = i * = i * **** * * * * ******** * *
** *
* * * * * * * ** * * * ** * * * ******
*
* * ** ** * * * * * **** = *** * * ***** * ** ** ****

** * ** * * * * * * * ** = i * ********* ****** * ** ***** * *
* = *
* ** = * * *** *** * * ** * * * *** ** * * * * * * * ***
* **
** * * * * * ** * * * * * * * **** **** * * * * * **
* **
*** *** * * ** * * * * * * *** ** * ** * * *** * * * **
*

*


*** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
* ****** * **** *
**** *******
* *** * ** * *
* * * ****
*
* **** ***** ** ***
* *** ** * ** * ** ** **

** * *
* *
* * *
*
*
* *
* *

* * * ** * * * * * i * = i * * = i * * ** ** * * * * * * ***** *
* *
* ** * * ** * * * * * ** * * *** ** ** * * ***
* **
* * * ** * ** * * * = ** *** * *** * ** *** *** **
*
** * * * * * * * * *** = i * *** * * * * * * **
* = *
* = *** * * * * * * * * * * * * * *** ** * * **** *
* **
* * * * * * * * ** * * ******* ****
* *
* ** ***** * ** * * * * * * * * ** * *** *** * ** ** ****** ***

*
*

*
* * *
*
answered by (-276 points)
0 like 0 dislike
Hidden content!
* * * ** ** ** *


**

{
* * * * * * * a, b, c, n;
* * * * ** ** ** *** **** * * ****
** ** **** ******** * ** * * *** ** * *


* * *** *** *** * * = 1; c * * n; c++)
*** ** * * * * * * = 1; a * c; a++)
* ** * ** ** = a +1; b * * c; b++)


* ** ** ** * * ** * (a * a + b * b == c * c)
* ** ** * ** *** * * %d ** **



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:162.159.115.32
©2016-2026

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 5.9k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 2.9k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 12.9k views
12,783 questions
183,442 answers
172,219 comments
4,824 users