0 like 0 dislike
912 views
勾股定理(英語:Pythagorean theorem)又稱商高定理、畢達哥拉斯定理、畢氏定理、百牛定理,是平面幾何中一個基本而重要的定理。 勾股定理說明,平面上的直角三角形的兩條直角邊的長度(古稱勾長、股長)的平方和等於斜邊長(古稱弦長)的平方。請設計一個程式,找出週常在N已內所有符合勾股定理的整數三角形三邊長。請注意不要重複喔。

sample input:

100

sample output:

3 4 5
5 12 13
6 8 10
7 24 25
8 15 17
9 12 15
9 40 41
10 24 26
12 16 20
12 35 37
15 20 25
15 36 39
16 30 34
18 24 30
20 21 29
21 28 35
24 32 40
[Exercise] Coding (C) - asked in 2016-1 程式設計(一)AC by (18k points)
ID: 15447 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00

reshown by | 912 views
0 1
#include <stdio.h>
#include <stdlib.h>

int main()

{
    int a,b,c,n;
    scanf("%d",&n);
    for(a=1;a<n;a++)
    {
        for(b=a+1;b<100-a;b++)
        {
            for(c=b+1;c<100-a-b;c++)
            {
            if(a*a+b*b==c*c)
                printf("%d %d %d\n",a,b,c);
            }
        }
    }
    return 0;
}

5 Answers

0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){

    int x,i,j,k,t=0;
* *** ** *** ** *** **** *** ** ** *** * ** *

    for(i=3; i<x ;i++){
** * * * ** ** * ** * * ** *** ** * ** **** j<x-i ;j++){
* * **** * * **** ** ***** ****** ** * * * **** ******* *** ** * k<x-i-j ;k++){
* ** * * * ** * * * *** **** ** * * * * * * ** *** ** * * ** * * i*i + j*j == k*k ){
********* ****** * ***** ** * * * ** * * * ** ***** ** **** * * **** * *** * * ** *** * * ** * ** * * **** ***
* * ** * **** ** * * ** * * *** * * *** ** * ****** * * * * *** ** * * * **** * ** ** ** *** * * *** * ** **** * * ******* *


** ** *** * ** * * ** ** *** * * ** * * * * * * ** *** * * ****** *** ** * **** ** * ** ****** ** * * ** * *** %d %d",i,j,k);
** * ** **** * **** **** ***** ** * * ** * ******* * ** ** * * ** * *** * * * *** ***** ***** * * *


*** * ** *** * ** **** *** * ** ** * * * *** * *** ** * ** ****** *** ** ** * *** * *



    }}}



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
#include<stdio.h>





int main(){
***** * ** ** **** x,i,j,k;
** ** ** * * *** **** * ** * * *** * * *** **
* * * *** ***** ** *** ** i<x ;i++){
****** ******* * ********* ** * * ** ****** j<x-i ;j++){
* * *** * * * * *** ** **** ** * ** * *** *** * * * * *** * *** k<x-i-j ;k++){
*** * * * ** *** * * ** * ***** * * **** **** *** ** * ** * * * *** ** * * ** * * ** *** * ** i*i + j*j == k*k ){
**** * ***** * **** *** * * * **** ** ** * * *** *** * *** *** **** * ** ** *** ** ****** ** *** *** **** * *** %d %d\n",i,j,k);
*** **** ** ** * *** ***** * * ** *** * ***** * * *** * **** ** * **** * ** **
** * ** *** *** **



 return 0;

}
answered by (-126 points)
0 like 0 dislike
Hidden content!
** ** **** *
***** * ***
** ** ** * * *
* * * *

*** ** ** * * * *
** * * *** ******* *
*
* * *
* *
*
**
* * * *
* *
* * * *

* ** * * * ** i * * * = i * ** = i * * * **** ** ** * ** *** * **
** *
** * *** ** * * * * * * ** ***** * * ** ** ** * *
** *
* * * * * * ** *** * * = * * *** * ** * *** ** *** *
* **
*** * * ** **** * * * * * * * = i * * ** ** ** **** **** * *
* =
*** = * * ***** *** * * * * ** * * * ** ** ** * * *** * *
* *
* ** * * ** * ** * ** ** * ** * * * *

** ** * *** * *** * * * * ** ** **** * * *** * ***




*
** *
answered by (-276 points)
0 like 0 dislike
Hidden content!
** * * * * *
*** * * * * *
** * *** ***** **
* **

* * *** *** ****** * *
* * ******* * * *** **

** **
* * *
* *
* * *
*
* *
* **

** * * ** * * * *** i * * = i * = i * **** *** * *** * * *

*** *** * * * * ** * * * ** * *** ******* ** * * ** **
* *
** * ** * * ** ** * * * * *** = * *** * *** * ** **** *
**
* * * * * * * * * * * * * = i * * * * * * * * ** * ** *
** = *
* = * * * * * * * * **** *** * ** * *
*
* *** * * * * * * *** * * * ** * *** ** **
* * *
* * * * ** * **** * * * * * * ** *** ** * ****
*
*
*
*
*
* **
answered by (-276 points)
0 like 0 dislike
Hidden content!
** ** * * **** * **


*

{
* * * ** * * * * a, b, c, n;
* **** ** * * ***** ******* * ** * * *
* ** * ** ** *** * * *** ** * *** *** *


*** * * ** ** ** ** * = 1; c **** n; c++)
** ** *** * *** = 1; a **** ** c; a++)
** ** * * *** ****** = a +1; b ** ** c; b++)


**** * * * * ** (a * a + b * b == c * c)
* ** * ** ** * * *** ** %d ** * * ***



}
answered by (-74 points)
Welcome to Peer-Interaction Programming Learning System (PIPLS) LTLab, National DongHwa University
English 中文 Tiếng Việt
IP:172.69.6.197
©2016-2025

Related questions

0 like 0 dislike
0 answers
[Resource] asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15475 - Available when: Unlimited - Due to: Unlimited
| 13 views
1 like 0 dislike
37 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15446 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 3k views
1 like 0 dislike
17 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15442 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
1 like 0 dislike
18 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15440 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 1.6k views
0 like 0 dislike
112 answers
[Exercise] Coding (C) - asked Oct 27, 2016 in 2016-1 程式設計(一)AC by Shun-Po (18k points)
ID: 15426 - Available when: 2016-10-27 18:30:00 - Due to: 2016-10-27 21:00:00
| 7k views
12,783 questions
183,442 answers
172,219 comments
4,824 users